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Analogies between scientific theories and children’s folk
theories have been central to the study of cognitive
development for decades. In support of the comparison,
numerous studies have shown that children have ab-
stract, ontologically committed causal beliefs across a
range of content domains. However, recent research
suggests that the comparison with science is informa-
tive not only about how children represent knowledge
but also how they acquire it: many of the epistemic
practices essential to and characteristic of scientific in-
quiry emerge in infancy and early childhood.

Core epistemic practices
Science is a historically recent, culturally specific endeavor
practiced by a tiny minority of the human species. As such,
it might seem a peculiar place to look for universals of
human cognition. However, science has a peculiar proper-
ty: it (often enough) gets the world right. With thoughts
that were unthinkable a few hundred years ago – germs,
genes, bits and bosons – we predict the future, explain the
past, and intervene effectively in the present. How is this
possible? What kind of epistemic practices could enable
this kind of learning?

The answer to this question, of course, is that we do and
do not know. Nevertheless, we can both formally and
informally characterize many of the epistemic practices
that are fundamental to scientific inquiry across content
domains (i.e., that are practiced by experimental physi-
cists, chemists, biologists, paleontologists and psycholo-
gists alike). For instance, scientists in every field:
! Rationally infer causal relationships from patterns of

statistical evidence.
! Have theories that structure and inform the interpreta-

tion of statistical evidence.
! Infer the existence of unobserved variables to explain

anomalous data.
! Selectively explore when evidence is confounded or

surprising.
! Isolate candidate causes in order to distinguish between

competing hypotheses.
! Constrain their generalizations depending on how

evidence is sampled.
! Decide when to rely on others’ knowledge and when to

initiate new investigations.

You could do everything on this list and still not be able
to do science. Science requires bringing these inferential
processes to bear on detailed knowledge about the world.
Moreover, scientists are skilled users of specialized physi-
cal and cognitive tools; they can investigate properties of
the world that are otherwise intractable (too big, too small,
occurring in too fast or too slow a temporal window, or too
complex for ordinary inference). However, if scientists did
not also engage in the epistemic practices listed above, they
would be unlikely to learn anything at all. These abilities
are arguably essential to human inquiry. Although many
animals explore to learn what is in the world and what can
be done with it (e.g., [1–3]), as far as we know, only human
beings explore to learn why things happen and only these
kinds of inferential processes reliably generate causal
discoveries. Although these abilities are both characteris-
tic of and critical to scientific discovery, I will suggest that
they are not fundamentally scientific abilities; they are
universal abilities at the foundations of human cognition.

Because these are the kinds of inferential abilities that
enable rapid, accurate, abstract learning, there are theo-
retical grounds for supposing that they emerge early in
infancy and are continuous throughout development. Em-
pirically however, these abilities have been investigated in
children ranging in age from infancy to middle childhood,
with the age of study constrained primarily by the com-
plexities of ancillary task demands. This provides an exis-
tence proof of core epistemic abilities in childhood, but
leaves open the question of whether these abilities are
continuous throughout development.

Statistical evidence, folk theories, and rational inference
Starting a decade ago, researchers demonstrated that very
young children have an ability basic to scientific discovery:
the ability to distinguish variables spuriously associated
with outcomes from genuine causes. If, for instance, a red
block activates a toy both when it is placed on the toy by
itself and when it is placed on the toy together with a blue
block, but the blue block only activates the toy when the red
block is also present, preschoolers infer that the red block,
not the blue one, makes the toy go. Control conditions
established that children’s inferences depend on the prob-
ability of the outcome given the intervention, not the
frequency of the outcome or the number of failed interven-
tions [4]. Several studies have since replicated this finding,
showing that across a range of tasks, ages, and content
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domains, children use the conditional probability of events
to make causal judgments ([5–9]; see [10] for review).

Learners can draw accurate inferences from the evi-
dence of just a handful of trials only if their inferences are
constrained by more abstract theories [11–15]. Research-
ers have proposed that children have such theories at
many different levels of abstraction, ranging from broad,
framework theories of naı̈ve physics, naı̈ve psychology, and
naı̈ve biology [14,16–24] to quite local causal beliefs (e.g.,
about the relationship between balance and mass [25],
density and floating [26], and ball properties and tennis
serves [27]). At every level of abstraction, these prior
beliefs affect learners’ judgments about statistical evidence
[28–31]. Given, for instance, identical co-variation evi-
dence, preschoolers are more likely to accept candidate
causes that are common over those that are rare, and
candidate causes that are theory consistent over those
that are theory violating [32,33]. However, given sufficient
evidence in support of an unlikely cause, preschoolers
change their minds (e.g., about whether flipping a switch
or talking to a toy will activate the toy [7], whether a toy
will activate on contact or at a distance [6], or whether
eating food or being scared causes a tummy ache [34,35]).
In simple contexts, work has shown that even pre-verbal
infants can use sparse data about the co-variation of
interventions and outcomes to make rational causal attri-
butions [36] (Figure 1).

Learners’ ability to update their beliefs given new evi-
dence can be formally characterized by hierarchical
Bayesian inference models (Box 1). These models have
motivated many of the empirical studies reviewed here

and successfully predicted both their qualitative and quan-
titative results.

Inferring unobserved variables
The studies discussed above focused on inferences from
observed patterns of data, however, many of the most
important scientific discoveries involve inferences about
unobserved, and even unobservable, variables. Several
recent studies have shown that even very young children
introduce unobserved variables to maintain causal beliefs
at different levels of abstraction and entrenchment.

Research suggests, for instance, that preschoolers as-
sume that perfect knowledge of the causes of an event
should enable perfect prediction of its effects (a strong form
of ‘causal determinism’). Determinism may not be an
accurate claim about the state of the world; nonetheless,
the assumption of determinism has played a critical role in
scientific discovery. Because scientists typically expect
causal mechanisms to behave predictably, they infer un-
observed, latent variables when evidence is anomalous
with respect to their prior beliefs.

Research suggests that when preschoolers see an appar-
ently probabilistically effective cause, they infer either that
a necessary generative cause is sometimes missing or that a
sufficient inhibitory cause is sometimes present. Moreover,
they rationally trade off these inferences: if they know that a
necessary generative cause might be absent, they are less
likely to infer that an inhibitory cause might be present [37].
Even toddlers seem to assume determinism; although they
faithfully imitate deterministically effective actions, they
explore rather than imitate probabilistically effective ones
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Figure 1. In the context of goal-directed actions, an individual’s influence on events and the influence on the outside world are often confounded. This experiment asked
whether infants (mean: 16 months; range 13-20 months) could rationally distinguish these causal attributions using minimal statistical data. (a) Infants saw two
experimenters (labeled 1 and 2 in the figure) push a button on a toy that played music when activated. In the Within-agents condition, both experimenters successfully
activated the green toy (G) once and failed once. In the Between-agents condition, one experimenter successfully activated the green toy twice; the other failed twice. The
infants were then handed the green toy (G); a red toy (R), identical to the green one except for color, was placed on a cloth within the infants’ reach. All infants were seated
next to their parents. All infants pushed the button on the toy and the toy always failed to activate for the infants. The outcomes in the Within-agents condition (considering
also the infants’ failure) vary independently of the agent, suggesting that the failure is due to the object; the outcomes in the Between-agents condition co-vary with the
agent independent of the object, suggesting that the failure is due to the agent. (b) As predicted, infants were more likely to first change the agent (by handing the toy to
their parents) than the object (by reaching for the new toy) in the Between-agents than Within-agents conditions ( p < .05 by Fisher’s Exact test; change agent vs. change
object: Within-agents, 29.4% vs. 71.6%; Between-agents, 68.4% vs. 31.6%). These results suggest that infants track the statistical dependence between agents, actions and
outcomes and can integrate prior knowledge and statistical data to make rational causal attributions. Reproduced, with permission, from [36].
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(despite remembering the actions equally well in both con-
texts). Such flexible behavior could allow children to discov-
er hidden causes that might account for the otherwise
unpredictable failures of these actions [38]. Preschoolers
will even introduce unobserved variables to preserve ab-
stract beliefs that are themselves derived from minimal
data [39] (Figure 2).

Selective exploration and isolating variables
The link between learning and exploration lies at the
heart of scientific discovery.  Although researchers have
long believed that children ‘learn by doing’, until recently
there was relatively little empirical support for this claim
and little understanding of how the seemingly unsystem-
atic behavior that characterizes exploratory play might
relate to the inferential processes thought to support
learning. However, recent work suggests that children’s
exploratory behavior is driven not just by the perceptual
novelty or salience of stimuli, but by formal properties of
evidence. In particular, consistent with the idea that
learners should be curious about causal hypotheses when
the posterior probability of a small number of hypotheses
is equivalent (Box 1), my collaborators and I have shown
both that children selectively explore both when the
prior probability favors one hypothesis but observed evi-
dence is more likely under another (i.e., when evidence is

surprising) and when the evidence is equally consistent
with multiple plausible hypotheses (i.e., when evidence is
confounded).

For instance, six and seven-year-olds with different
beliefs about how objects balance engage in different pat-
terns of both exploration and explanation given identical
evidence. Children who have the (correct) mass theory of
balance selectively explore a novel toy when given a choice
between playing with a novel toy and a familiar asymmet-
ric block balanced over its center of mass. However, chil-
dren who (incorrectly) believe that all objects balance over
their geometric center explore the block instead. Children
show the opposite pattern of responses when given the
choice between the novel toy and an asymmetric block
balancing over its geometric center [40].

Children also explore violations of more abstract beliefs.
One virtue of inductive generalization is that it obviates
the need for trial and error learning: if you learn that one
fep is magnetic, you can infer that other feps are magnetic
without testing them (see, for example, [41,42]). By the
same principle however, when such inductive generaliza-
tions are violated (e.g., only some feps are magnetic),
exploration is rational. Consistent with this, preschoolers
are more likely to explore perceptually identical objects
when a causal property varies within kinds than across
kinds ([43]; see also [44]). Moreover, children’s exploration

Box 1. Hierarchical Bayesian inference models

Hierarchical Bayesian inference models provide a formal account of
how abstract knowledge can be learned from sparse data. Bayes’ law
states that the learner’s belief in a hypothesis after observing evidence,
the posterior probability of the hypothesis, P(hje), is proportional to (i)
its likelihood, P(ejh), that is, the probability that the hypothesis, if true,
would have generated the observed evidence, and (ii) its prior
probability, P(h), that is, the probability that the hypothesis is generated
by the learner’s background theories. Formally:

PðhjeÞ / PðejhÞPðhÞ [I]

If for instance, a learner observes evidence (e) of a child coughing and
considers the possibility (h1) that the child has a cold, (h2) that the child
has influenza, and (h3) that the child has lung cancer, the prior
probability favors h1 and h2, because colds and flu are more common
than lung cancer. However, the likelihood favors h1 and h3, because
colds and lung cancer are more likely than the flu to generate cough-
ing. Thus the posterior probability favors the hypothesis that the child
has a cold (example from, and detailed account available in [62]).

Bayes’ law also provides a formal account unifying what might
otherwise seem like very different routes to uncertainty and explora-
tion. Bayes’ law suggests that a learner will be uncertain whenever
the posterior probability of two or more hypotheses is equivalent:

Pðh1jeÞ $ Pðh2jeÞ [II]

This can occur if the prior probability favors one hypothesis and the
likelihood another:

Pðejh1Þ < Pðejh2Þ and Pðh1Þ > Pðh2Þ [III]

Or if the prior probability and the likelihood of multiple hypotheses are
equivalent:

Pðh1Þ $ Pðh2Þ and Pðejh1Þ $ Pðejh2Þ [IV]

Line III is a formalization of what it means for evidence to be surprising;
line IV, of what it means for evidence to be confounded. Thus Bayes’
law provides an intuitive account of why exploration in the face of
surprise and confounding derive from a common principle.

These principles follow directly from the simplest form of Bayes’ law.
However, Bayesian inference can be extended hierarchically, allowing
the learner to do probabilistic inference at multiple levels of abstraction.
A learner, for instance, may not only have the specific prior belief that
colds are a more common cause of coughing than lung cancer, but also
have the more abstract knowledge that diseases generate symptoms.
This allows the learner to rule out many specific hypotheses about
possible causal relations (e.g., that coughing causes lung cancer) that
are otherwise consistent with an observed correlation [15].
Moreover, the learner can learn abstract beliefs at the same time, or

even prior to, learning the more specific beliefs they constrain. This
ability to engage in joint inference can be illustrated intuitively by a
thought experiment proposed by the philosopher Nelson Goodman
[68]. Imagine walking into a room with thousands of brown paper
bags, each containing a hundred marbles. Suppose you reach into
one bag and pull out a single marble at random. It is red. You reach
into the same bag and pull out a second marble at random. Again it is
red. You reach in a third time and pull out a third red marble. Now you
move onto a new bag and pull out a single marble. It is blue. You
reach in a second time. Again the marble is blue. Then you move onto
a third bag. You pull out a green marble, and then a second green
marble. At this point you have seen a handful of marbles in a room
containing hundreds of thousands of marbles. Nonetheless, from this
tiny bit of data you might have drawn a powerful inductive inference:
the contents of the bags in the room are homogeneous. This very
abstract inference can support even more rapid learning from
subsequent data: if you pull a single purple marble from the next
bag, there are 99 marbles in the bag that you have not seen;
nonetheless, you might guess that they are all purple.
Hierarchical Bayesian inference models provide a formal account of

our ability to jointly infer such abstract ‘over-hypotheses’, together
with subordinate hypotheses that constrain the interpretation of
subsequent data, showing for instance that learners can simulta-
neously infer a specific tree-structure and the fact that the data are
organized as a tree (e.g., rather than a ring or a chain) [60–64].
Recently researchers have shown that even infants can infer over
hypotheses from sparse data [65].
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is systematically related to their tendency to generate
causal explanations for anomalous evidence. Children
who expect tomas to activate toys and blickets not to
activate toys can explain a toma’s unexpected failure to
activate the toy either by referring to a category mistake
(e.g., ‘It’s really a blicket’) or a causal mistake (e.g., ‘You put
it on the wrong side’). Children who generate specifically
causal (as opposed to category-switch) explanations engage
in more exploratory behavior [45] (see also [46]).

Such studies have looked at children’s exploration when
evidence is surprising; other studies have looked at pre-
schoolers’ tendency to explore confounded evidence. Rela-
tive to a novel toy for instance, preschoolers are more likely

to explore a familiar toy when it generates confounded
than un-confounded evidence [47]. Moreover, preschoolers
are sensitive not only to the relative ambiguity of evidence,
but also the potential information gain associated with
different interventions. Given ambiguous evidence, chil-
dren selectively perform interventions that isolate compet-
ing candidate causes and maximize information gain [48];
see also [49]) (Figure 3).

Sampling processes
Scientists routinely generalize from small samples of data
and draw different generalizations depending on the de-
gree to which a sample is thought to be representative of a
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Figure 2. Can preschoolers (mean: 57 months; range: 49-64 months; n = 16 per condition) infer abstract laws from minimal data? This study, predicted that, if so, infants
would infer the presence of an unobserved entity to account for evidence that would otherwise be anomalous if construed with respect to the abstract law. (a) In Phase 1,
children saw a few trials of evidence in which red blocks activated blue blocks, blue blocks activated yellow blocks, and other interactions were inert (Conditions A and B) or
red blocks activated both blue and yellow blocks and other interactions were inert (Conditions C and D). In Phase 2, children either saw a novel white block activate a blue
block (Conditions A and C) or a red block activate the novel white block (Conditions B and D). In Phase 3, all children saw the white block go behind a curtain. A yellow block
adjacent to the curtain then activated. If preschoolers are ‘concrete’ learners they should assume that the white block is the only block behind the curtain. Schulz et al.
predicted that children would instead make a more abstract inference, inferring from the fact that the white block activated the blue block that the white block was the same
kind of block as the red block. If so, the evidence that the white block apparently activated the yellow block would seem anomalous. (b) As predicted, although all the
children had seen only the white block go behind the curtain, only when the evidence was anomalous with respect to the causal laws (i.e., in Conditions A and D) did
children infer the presence of an additional, unobserved block. All children reached behind the curtain once and were given the white block; would children reach a second
time? Children were more likely to reach twice in Condition A than in Condition B (69% vs. 6%; x2(1,n = 32) = 13.33, p < .001) and in Condition D than in Condition C (50% vs.
6%; x2(1,n = 32) = 7.57, p < .01). There were no differences between Conditions A and D or B and C. Reproduced, with permission, from [39].
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target population. By 15 months, infants also constrain
their generalizations of object properties depending on
whether they think evidence has been sampled randomly
or selectively [50] (Figure 4). Abundant work now suggests
that a sensitivity to the relationship between samples and
populations emerges early in infancy; recent studies sug-
gest as early as six-months [51]. Infants for instance,
expect a box containing more red balls than white balls
to generate a sample of more red than white balls; simi-
larly, they expect that a sample of mostly red balls came
from a population of mostly red balls. Moreover, infants
suspend such inferences if the experimenter who pulls the
sample first expresses a preference for the minority ball
[52] (see also [53]). Slightly older infants make the same
kind of inference in reverse: if an agent selects only frogs
from a box containing mostly ducks, children infer that the
agent has a preference for frogs, and the more improbable
the sample, the more likely children are to assume the
agent has a preference [54,55]. Thus before they are two,
infants seem to understand that evidence can be sampled
in different ways, that different sampling processes will
generate different evidence, and thus that different gen-
eralizations are warranted.

Learning from others
New scientific investigations are informed (and sometimes
rendered unnecessary) by studies already part of the liter-
ature; what scientists decide to explore depends on what
they believe is already known. Such rational inferences
about the advantages of learning from others and learning
from self-guided exploration also govern the behavior of
preschoolers [44,56–58]. If for instance, a teacher freely
demonstrates one function of a toy (and functions are rare),
the learner can rationally assume that there is only one
function; if additional functions were present, and the
teacher is knowledgeable and helpful, she would have
demonstrated these as well. This suggests a trade-off
between instruction and exploration: children who are
deliberately instructed in the functions of a toy should
explore the toy less than children who are shown identical
evidence by an interrupted or naı̈ve agent. In the pedagog-
ical condition, the absence of evidence for additional func-
tions provides uniquely strong evidence for their absence
(see [59] for a formal account of such pedagogical sampling
assumptions). My collaborators and I tested this prediction
by looking at four-year-olds’ exploratory behavior in a
pedagogical condition (‘Look at what my toy does.’) or
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Figure 3. This experiment investigated whether preschoolers (n = 20 per condition; mean: 54 months, range: 46-64 months) would isolate causal variables consistent with a
folk theory of contact causality, specifically when there was the possibility of information gain. (a) Children were shown either that 4 of 4 beads (the All Beads condition) or 2
of 4 beads (the Some Beads condition) activated a toy when the beads were placed, one at a time, on top of the toy. Both groups of children were then shown two bead
pairs. One pair could be pulled apart into two individual beads; the other bead pair was glued together. The children saw that both bead pairs, as pairs, activated the toy. In
the All Beads condition the base rate information supports the hypothesis that both beads in both pairs activate the toy, thus there is relatively little potential for information
gain. By contrast, in the Some Beads condition, the evidence is genuinely ambiguous: either or both beads might be effective. All children were left alone to play with the
beads and the toy. The prediction was that children would be more likely to snap apart the separable bead pair and test each bead individually on the toy in the Some Beads
conditions than the All Beads condition. (b) As predicted, children in the Some Beads conditions were more likely than children in the All Beads condition to perform the
informative action that could disambiguate the evidence (50% vs. 5%; Fisher’s Exact, p < .05). In a second experiment, children (n = 20 per condition; mean: 54 months,
range: 43-63 months) received the same base rate training but then were given only the stuck pair of beads to explore. In the Some Beads condition, 45% of the children
(compared to only one child, 5%, in the All Beads condition; Fisher’s Exact, p < .05) spontaneously designed a novel intervention to isolate the variables: rotating the beads
vertically so that only a single bead contacted the toy at a time. These results suggest that preschoolers distinguish potentially informative and uninformative interventions
and selectively perform interventions that isolate variables and maximize information gain. Reproduced, with permission, from [48].
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one of three non-pedagogical conditions: an interrupted
condition (identical to the pedagogical condition, except
that the experimenter was interrupted immediately
after the demonstration), an accidental demonstration
(‘Whoops, look at that.’), and at baseline. In the pedagogical
condition, preschoolers spent most of their free play ex-
ploring only the demonstrated function; consequently, they
failed to learn other properties of the toy. By contrast, in
the non-pedagogical conditions, preschoolers explored
broadly [57]. Instruction is thus a ‘double-edged sword’:
teaching promotes efficient learning by constraining the
hypotheses learners consider; however, this means that
learners in pedagogical contexts are less likely than lear-
ners in non-pedagogical contexts to discover uninstructed
information. Similar trade-offs affect scientific inquiry.
Because prior knowledge constrains the hypothesis
space, experts will be less likely than novice researchers

to investigate some hypotheses (some of which may turn
out to be true).

Towards a computational account of learning in early
childhood
I began by noting that we can characterize epistemic
practices characteristic of both science and early childhood
cognition formally as well as informally (Box 1.) Recent
advances in computational modeling have provided formal
accounts of how abstract knowledge can both be learned
and support learning from sparse data across content
domains [60–65]. Some of children’s inferential abilities
can be captured with these models (see, e.g., [61,66], for
reviews and analysis). Critically, however, there is nothing
magic or exhaustive about this list of epistemic practices,
precisely because there is no computational model that
can generate all and only those processes necessary for
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Figure 4. This experiment investigated whether infants would constrain their generalizations of object properties depending on how objects are sampled. (a) Infants (mean:
15 months, 15 days; range 13-18 months) were shown one, two, or three blue balls that squeaked, drawn either from a box containing mostly blue balls or from a box
containing mostly yellow balls. Infants were then given an inert yellow ball. The prediction was that infants would be more likely to generalize the property (and thus
persistently try to squeak the yellow ball) when they had observed evidence apparently randomly sampled from the population as a whole. In Experiment 1, the
experimenter drew three blue balls from the mostly blue box (a sample that might have been randomly drawn from the whole box). She squeezed each ball and it squeaked.
This was compared with a condition in which the experimenter did the same actions, but drew the three blue balls from a box containing mostly yellow balls (a sample
unlikely to have been drawn randomly from the whole box) (b). Infants squeezed the inert yellow ball less often when the blue balls had apparently been sampled
selectively (0.87 vs. 2.53 times, t (28) = 2.45, p < 0.05). Arguably, infants might be willing to generalize from majority objects to minority objects but not vice versa so in
Experiment 2, only a single blue ball was drawn from the mostly yellow box and squeezed either once (Yellow1ball), or three times (Yellow1ball Extended). This condition
was compared with a replication of the condition in which three blue balls were drawn from the box containing mostly yellow balls (Yellow3balls(rep)). Critically, drawing
only a single yellow ball from a mostly blue box is not an improbable sample. If infants are sensitive to the sampling process, then even though they had seen more balls
squeezed in the three-ball condition than the one-ball conditions, they should think that the evidence in the one-ball conditions is more likely to have been randomly
sampled from the population. Thus, the prediction was that infants themselves should squeeze the ball more often in the one-ball conditions. This is what was found (0.75
squeezes in the Yellow3ball replication vs. 2.12 in the Yellow1ball condition and 2.41 in the Yellow1ball extended condition, p < .05 by t-test throughout) (b). In subsequent
experiments (not depicted), infants’ tendency to squeeze the ball was graded with respect to the data. When two blue balls were drawn from the mostly yellow box, children
showed a response intermediate between the one ball and three balls condition. When behavioral cues (i.e., by turning the box upside down and letting balls fall out versus
fishing around deliberately for the balls) clearly specified that the sampling process was random or selective, infants made different responses to identical data.
Reproduced, with permission, from [50].
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knowledge acquisition. Much as we want simple, elegant,
unified principles of learning – Hebb’s rule, Rescorla-
Wagner, Bayes’ law – none of them does justice to what
children can do. There is as yet no algorithm for this kind of
learning (Box 2). Developing a unified theory of hypothesis
generation, inquiry and discovery remains a hard problem
of cognitive science [67]. What we can do is provide empiri-
cal evidence that children engage in this kind of learning,
setting the standard to which the next generation of theo-
ries of learning must aspire.

References
1 Emery, N.J. and Clayton, N.S. (2004) The mentality of crows.

Convergent evolution of intelligence in corvids and apes. Science
306, 1903–1907

2 Weir, A.A.S. et al. (2002) Shaping of hooks in New Caledonian crows.
Science 297, 981

3 Whiten, A. et al. (2005) Conformity to cultural norms of tool use in
chimpanzees. Nature 437, 737–740

4 Gopnik, A. et al. (2001) Causal learning mechanisms in very young
children: two-, three-, and four-year-olds infer causal relations from
patterns of variation and covariation. Dev. Psychol. 37, 620–629

5 Kushnir, T. and Gopnik, A. (2005) Young children infer causal strength
from probabilities and interventions. Psychol. Sci. 16, 678–683

6 Kushnir, T. and Gopnik, A. (2007) Conditional probability versus
spatial contiguity in causal learning: preschoolers use new
contingency evidence to overcome prior spatial assumptions. Dev.
Psychol. 44, 186–196

7 Schulz, L.E. and Gopnik, A. (2004) Causal learning across domains.
Dev. Psychol. 40, 162–176

8 Sobel, D.M. and Kirkham, N.Z. (2006) Blickets and babies: the
development of causal reasoning in toddlers and infants. Dev.
Psychol. 42, 1103–1115

9 Sobel, D.M. et al. (2007) The blicket within: Preschoolers’ inferences
about insides and causes. J. Cogn. Dev. 8, 159–182

10 Gopnik, A. et al. (2004) A theory of causal learning in children: causal
maps and Bayes nets. Psychol. Rev. 111, 1–31

11 Carey, S. (1985) Conceptual Change in Childhood, MIT Press
12 Gopnik, A. and Meltzoff, A.N. (1997) Words, Thoughts, and Theories,

MIT Press
13 Keil, F. (1989) Concepts, Kinds, and Cognitive Development, MIT Press
14 Wellman, H.M. and Gelman, S.A. (1992) Cognitive development:

foundational theories of core domains. Annu. Rev. Psychol. 43, 337–375
15 Tenenbaum, J.T. and Griffiths, T.L. (2009) Theory-based causal

induction. Psychol. Rev. 116, 661–716
16 Flavell, J.H. et al. (1995) Young children’s knowledge about thinking.

Monogr. Soc. Res. Child Dev. 60, (1, Serial No. 243)
17 Inagaki, K. and Hatano, G. (1993) Young children’s understanding of

the mind-body distinction. Child Dev. 64, 1534–1549
18 Kalish, C. (1996) Preschoolers’ understanding of germs as invisible

mechanisms. Cogn. Dev. 11, 83–106
19 Perner, J. (1991) Understanding the Representational Mind. Learning,

Development, and Conceptual Change, MIT Press
20 Shultz, T.R. (1982) Rules of causal attribution. Monogr. Soc. Res. Child

Dev. 47, (Serial No. 194)
21 Spelke, E.S. et al. (1992) Origins of knowledge. Psychol. Rev. 99, 605–

632
22 Carey, S. (2009) The Origin of Concepts, Oxford University Press
23 Harris, P.L. et al. (1996) Children’s use of counterfactual thinking in

causal reasoning. Cognition 61, 233–259
24 Sobel, D.M. and Munro, S.E. (2009) Domain generality and specificity

in children’s causal inference about ambiguous data. Dev. Psychol. 45,
511–524

25 Karmiloff-Smith, A. and Inhelder, B. (1975) If you want to get ahead,
get a theory. Cognition 3, 195–212

26 Kohn, A.S. (1993) Preschoolers’ reasoning about density: Will it float?
Child Dev. 64, 1637–1650

27 Kuhn, D. et al. (1988) The Development of Scientific Thinking Skills.
Developmental Psychology Series, Academic Press (San Diego)

28 Alloy, L.B. and Tabachnik, N. (1984) Assessment of covariation by
humans and animals: the joint influence of prior expecations and
current situational information. Psychol. Rev. 91, 112–149

29 Fischhoff, B. and Beyth-Marom, R. (1983) Hypothesis evalution from a
Bayesian perspective. Psychol. Rev. 90, 239–260

30 Koslowski, B. (1996) Theory and evidence: the development of scientific
reasoning, MIT Press

31 Murphy, G.L. and Medin, D.L. (1985) The role of theories in conceptual
coherence. Psychol. Rev. 92, 289–316

32 Sobel, D.M. and Munro, S.A. (2009) Domain generality and specificity
in children’s causal inferences about ambiguous data. Dev. Psychol. 45,
511–524

33 Sobel, D.M. et al. (2004) Children’s causal inferences from indirect
evidence: Backwards blocking and Bayesian reasoning in preschoolers.
Cogn. Sci. 28, 303–333

34 Schulz, L.E. et al. (2007) Can being scared cause tummyaches? Naı̈ve
theories, ambiguous evidence, and preschoolers’ causal inferences.
Dev. Psychol. 43, 1124–1139

35 Bonawitz, E.B. et al. (2012) Teaching the Bayesian child: Three-and-a-
half-year-olds’ reasoning about ambiguous evidence. J. Cogn. Dev.
http://dx.doi.org/10.1080/15248372.2011.577701

36 Gweon, H. and Schulz, L.E. (2011) 16-month-olds rationally infer
causes of failed actions. Science 332, 1524

37 Schulz, L.E. and Sommerville, J. (2006) God does not play dice: causal
determinism and children’s inferences about unobserved causes. Child
Dev. 77, 427–442

Box 2. Outstanding questions

! Computational models of many of the individual epistemic
practices critical to inquiry and discovery are available, ranging
from how individuals generalize from samples of data to how they
optimize information gain by isolating variables. However, it is not
yet possible to formally specify any process that generates all and
only those epistemic practices fundamental to inquiry and
discovery. Can a unified theory of exploration and learning be
advanced?

! Because abilities critical to inquiry emerge in infancy and early
childhood, these abilities may be universal. However, these
abilities have been studied almost exclusively in populations with
substantial exposure to modern technology. To what extent are
the epistemic practices that characterize scientific inquiry present
in the behavior of children cross-culturally?

! Most of the research on inductive inference in infancy and early
childhood has emphasized continuity through development. How
might well-established changes in children’s information proces-
sing abilities and their world knowledge (e.g., [32,35]) be
distinguished from changes in their core inferential abilities?
What, if any, changes occur in inductive reasoning abilities
through infancy and early childhood?

! Current approaches to hypothesis generation combine rando-
mized trial-and-error searches with quite general principles for
proposing changes to existing hypotheses (i.e., allowing any
changes expressible within the grammar of a theory) [69,70].
Intuitively however, people seem to have many abilities that
could constrain hypothesis generation that are not accounted
for in current approaches to learning: the ability to distinguish
‘good’ wrong ideas from ‘bad’ ones (even when both ideas are
wrong), the feeling of knowing when we are ‘on the right track’,
and the ability to recognize a promising possible solution well
before we know whether the solution in fact better predicts the
data. These abilities might be explained by additional con-
straints on hypothesis generation; in particular, the ability to
constrain our hypotheses based on an abstract representation of
the kind of errors made by our current hypotheses [67]. Such
constraints might also help learners decide which problems are
potentially tractable (and thus worth devoting time to) and
which problems are not. As yet, there is little empirical evidence
for the idea that learners have these intuitions and no formal
account of learning that takes advantage of the possibility of
such higher-order constraints on hypothesis generation.
Although speculative, such ideas might be promising areas for
future investigation.

Opinion Trends in Cognitive Sciences July 2012, Vol. 16, No. 7

388

http://dx.doi.org/10.1080/15248372.2011.577701


38 Schulz, L.E. et al. (2008) Judicious imitation: young children imitate
deterministic actions exactly, stochastic actions more variably. Child
Dev. 79, 395–410

39 Schulz, L.E. et al. (2008) Going beyond the evidence: abstract laws and
preschoolers’ responses to anomalous data. Cognition 109, 211–223

40 Bonawitz, E.B. et al. (2012) Children balance theories and evidence in
exploration, explanation, and learning. Cognitive Psychol. 64, 215–234

41 Gelman, S.A. and Markman, E.M. (1986) Categories and induction in
young children. Cognition 23, 183–209

42 Gelman, S.A. and Markman, E.M. (1987) Young children’s inductions
from natural kind: The role of categories and appearances. Child Dev.
58, 1531–1541

43 Schulz, L.E. et al. (2008) Word, thought, and deed: The role of object
labels in children’s inductive inferences and exploratory play. Dev.
Psychol. 44, 1266–1276

44 Butler, L.P. and Markman, E.M. (2012) Preschoolers use intentional
and pedagogical cues to guide inductive inferences and exploration.
Child Dev. http://dx.doi.org/10.1111/j.1467-8624.2012.01775.x

45 Legare, C.H. (2012) Exploring exploration: explaining inconsistent
information guides hypothesis-testing behavior in young children.
Child Dev. 83, 173–185

46 Legare, C.H. et al. (2010) Inconsistency with prior knowledge triggers
children’s causal explanatory reasoning. Child Dev. 81, 929–944

47 Schulz, L.E. and Bonawitz, E.B. (2007) Serious fun: preschoolers play
more when evidence is confounded. Dev. Psychol. 43, 1045–1050

48 Cook, C. et al. (2011) Where science starts: spontaneous experiments in
preschoolers’ exploratory play. Cognition 120, 341–349

49 Sodian, B. et al. (1991) Young children’s differentiation of hypothetical
beliefs from evidence. Child Dev. 62, 753–766

50 Gweon, H. et al. (2010) Infants consider both the sample and the
sampling process in inductive generalization. Proc. Natl. Acad. Sci.
U.S.A. 107, 9066–9071

51 Denison, S. et al. (2012) The emergence of probabilistic reasoning in
very young infants: Evidence from 4.5- and 6-month-old infants. Dev.
Psychol. http://dx.doi.org/10.1037/a0028278

52 Xu, F. and Garcia, V. (2008) Intuitive statistics by 8-month-old infants.
Proc. Natl. Acad. Sci. U.S.A. 105, 5012–5015

53 Xu, F. and Denison, S. (2009) Statistical inference and sensitivity to
sampling in 11-month-old infants. Cognition 112, 97–104

54 Kushnir, T. et al. (2010) Young children use statistical sampling to infer
the preferences of others. Psychol. Sci. 21, 1134–1140

55 Ma, L. and Xu, F. (2011) Young children’s use of statistical sampling
evidence to infer the subjectivity of preferences. Cognition 120, 403–411

56 Buchsbaum, D. et al. (2011) Children’s imitation of causal action
sequences is influenced by statistical and pedagogical evidence.
Cognition 120, 331–340

57 Bonawitz, E.B. et al. (2011) The double-edged sword of pedagogy:
teaching limits children’s spontaneous exploration and discovery.
Cognition 120, 322–330

58 Kushnir, T. et al. (2008) The role of preschoolers’ social understanding
in evaluating the informativeness of causal interventions. Cognition
107, 1084–1092

59 Shafto, P. and Goodman, N. (2008) Teaching games: statistical
sampling assumptions for pedagogical situations. In Proceedings of
the Cognitive Science Society (Love, B.C., McRae, K. and Sloutsky,
V.M., eds), pp. 1632–1637, Cognitive Science Society

60 Tenenbaum, J.B. et al. (2006) Theory-based Bayesian models of
inductive learning and reasoning. Trends Cogn. Sci. 10, 309–318

61 Tenenbaum, J.B. et al. (2011) How to grow a mind: statistics, structure,
and abstraction. Science 331, 1279–1285

62 Kemp, C. and Tenenbaum, J.B. (2008) The discovery of structural form.
Proc. Natl. Acad. Sci. U.S.A. 105, 10687–10692

63 Kemp, C. et al. (2007) Learning overhypotheses with hierarchical
Bayesian models. Dev. Sci. 10, 307–321

64 Goodman, N.G. et al. (2011) Learning a theory of causality. Psychol.
Rev. 118, 110–119

65 Dewar, K.M. and Xu, F. (2010) Induction, overhypothesis, and the
origin of abstract knowledge. Psychol. Sci. 21, 1871–1877

66 Gopnik, A. and Wellman, H. (2012) Reconstructing constructivism:
causal models, Bayesian learning mechanisms and the theory theory.
Psychol. Bull. http://dx.doi.org/10.1037/a0028044

67 Schulz, L.E. (2012) Finding new facts; thinking new thoughts. In
Rational constructivism, Advances in Child Development and
Behavior 42 (Xu, F. and Kushnir, T., eds), Elsevier

68 Goodman, N. (1946) A query on confirmation. J. Philos. 43, 383–385
69 Bonawitz, E.B. et al. (2012) Rational randomness: the role of sampling

in an algorithmic account of preschooler’s causal learning. In Rational
constructivism, Advances in Child Development and Behavior 42 (Xu,
F. and Kushnir, T., eds), Elsevier

70 Ullman, T.D. et al. (2010) Theory acquisition as stochastic search. In
Proceedings of the Cognitive Science Society (Camtrabone, R. and
Ohlsson, S., eds), pp. 2840–2845, Cognitive Science Society

Opinion Trends in Cognitive Sciences July 2012, Vol. 16, No. 7

389

http://dx.doi.org/10.1037/a0028044
http://dx.doi.org/10.1111/j.1467-8624.2012.01775.x
http://dx.doi.org/10.1037/a0028278

	The origins of inquiry: inductive inference and exploration in early childhood
	Core epistemic practices
	Statistical evidence, folk theories, and rational inference
	Inferring unobserved variables
	Selective exploration and isolating variables
	Sampling processes
	Learning from others
	Towards a computational account of learning in early childhood
	References


