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Abstract

 

The conditional intervention principle is a formal principle that relates patterns of interventions and outcomes to causal structure.
It is a central assumption of experimental design and the causal Bayes net formalism. Two studies suggest that preschoolers
can use the conditional intervention principle to distinguish causal chains, common cause and interactive causal structures even
in the absence of differential spatiotemporal cues and specific mechanism knowledge. Children were also able to use knowledge
of causal structure to predict the patterns of evidence that would result from interventions. A third study suggests that children’s
spontaneous play can generate evidence that would support such accurate causal learning.

 

Introduction

 

Until recently, research on children’s causal learning has
focused primarily on children’s understanding of causal
mechanisms. Even infants use spatiotemporal cues to
infer contact causality (e.g. Leslie & Keeble, 1987) and
young children understand many domain-specific causal
relations (Ahn, Gelman, Amsterlaw, Hohenstein & Kalish,
2000; Bullock, Gelman & Baillargeon, 1982; Carey &
Spelke, 1994; Shultz, 1982; Spelke, Breinlinger, Macomber
& Jacobson, 1992). In adult cognitive psychology by
contrast, researchers have focused primarily on domain-
general causal learning from associations (Shanks, 1985;
Shanks & Dickinson, 1987; Spellman, 1996) and patterns
of covariation (Cheng, 1997, 2000) among events.

Recently, however, researchers have suggested that the
crucial piece missing from both mechanism and covari-
ation accounts of  causal reasoning is the notion of
intervention. Specifically, researchers have suggested that
knowing that X directly causes Y means knowing that,
all else being equal, intervening to change X can change
Y (Pearl, 1988, 2000; Spirtes, Glymour & Scheines, 1993;
Woodward, 2003). We will discuss the interventionist
account of causation first intuitively and then formally
with respect to its role in causal Bayes net learning
algorithms.

Suppose you notice that when you go to a party and
drink wine, you do not sleep well. This could be because
wine is keeping you up, and parties make you drink
wine, or because parties both cause insomnia and make
you drink wine. Assuming that these are the only three
relevant variables, you could learn the correct causal
structure by intervening to hold one factor constant and
then intervening to vary the other factor. For example,
you could try going to parties and drinking and going to
parties sober. If  there is no difference in how you sleep,
then wine is not likely to be the direct cause of your
insomnia. If  there is a difference, then wine is a likely
cause – and you can make this inference even if  you do
not know anything about the mechanism by which wine
keeps you awake.

Causal relations, like the relationship between drink-
ing, partying and insomnia, can be represented by directed
graphs, also called causal Bayes nets (see Figure 1, and
introduction to this special section for more details).
Events (e.g. wine, partying, insomnia, etc.) are represented
by variables that can take particular values (e.g. present
or absent). Relations between the variables are represented
by directed edges (arrows) connecting those variables.
The structure of the graph constrains the conditional
probabilities of the variables. All variables in a graph are
assumed to be probabilistically independent of all other

 

Address for correspondence: L. Schulz, NE20-459, MIT Department of Brain and Cognitive Sciences, 77 Massachusetts Avenue, Cambridge, MA
02139, USA; e-mail: lschulz@mit.edu



 

Conditional interventions 323

 

© 2007 The Authors. Journal compilation © 2007 Blackwell Publishing Ltd.

 

variables except their own descendents, conditional on
their own immediate ancestors.

Critically, in a 

 

causal

 

 Bayes net, the arrows encode not
just constraints on probabilistic dependencies but causal
relationships. In particular, arrows between variables
imply that interventions on the variable on the left side
of the arrow will lead to changes in the variable on the
right side. Within the formalism, interventions are treated
as special additional variables with special features:
(i) they are exogenous (that is, they are not influenced
by any other causal factors in the graph); (ii) they fix the
probability distribution of the variables of interest; and
(iii) they influence other variables in the graph only
through their effect on the intervened on variable. If  you
know the structure of  the causal graph, you can infer
the outcome of interventions. Conversely, if  you do not
know the graph, you can use data from interventions to
learn the underlying structure.

 

1

 

One way to capture these relations between inter-
ventions, dependencies and causal arrows formally is as
follows: for a set of variables in a causal graph, W directly
causes I (W

 

→

 

I) if  and only if: (i) an intervention could
fix the values of all other variables in the graph and
result in I having a particular probability distribution
(P(I)) such that (ii) another intervention on the value of
W (iii) will change the probability distribution of I from
P(I) to P

 

′

 

(I) but (iv) not influence I other than through
W and (v) not change the fixed value of the other variables
in the graph.

 

2

 

 We will call this the conditional inter-
vention principle.

Although this principle might sound complex, it is
simply a formal statement of the intuitions that underlie
experimental design. To find the causal relationship
between two variables, you can intervene to fix the dis-
tribution of potential confounders and then see what
happens when you intervene to manipulate the variable
of interest. If, controlling for all else, changing the value
of W changes the value of I, we can conclude that there

is a direct causal relationship between W and I – and we
can learn this relationship even if  we do not know the
underlying mechanism. Conversely if, controlling for all
else, changing the value of W fails to change the value
of I, we can conclude that the relationship is not causal,
even if  the variables are correlated. Unlike associationist
and covariation accounts of causal learning (Cheng,
1997, 2000; Shanks & Dickinson, 1987), causal Bayes
nets distinguish evidence obtained by observation from
and evidence obtained by intervention and make differ-
ent inferences from the two types of evidence.

In this study, we look at whether children can use the
conditional intervention principle to learn the causal
structure underlying observed data. Imagine, for instance,
that you flip a switch and two gears start to spin simul-
taneously. Assuming the causal relationships between
the gears are generative (i.e. rather than inhibitory) and
deterministic, there are four possibilities: (a) A makes B
spin, (b) B makes A spin, (c) neither gear makes the
other spin (because the switch independently makes each
gear spin), (d) neither gear will spin without the other
(because the switch and A together make B spin and the
switch and B together make A spin). The pictures in
Figure 2 represent these alternatives.

If  while the switch was on you could remove gear A
to see if  gear B stops (or vice versa), then you could learn
the causal relation between A and B from the immediate
effect of your own interventions. But suppose (perhaps
because your fingers might get pinched) you cannot remove
a gear when the switch is on. You could still distinguish
the structures by observing the conditional dependence
among interventions and outcomes. You could, for
instance, remove gear A, flip the switch on, and observe
gear B. Then you could flip the switch off, replace gear A,
remove gear B and flip the switch on (see Figure 3). Note
that these interventions do not change the association
between the two gears. Also note that the effect of the
intervention to remove A is not to stop B (because B
isn’t moving in the first place). Nor is the effect of the
intervention to replace A, to make B spin (because B is still
in both cases). However, consistent with the conditional
intervention principle, for a fixed value of other causes
of B (the switch), an intervention on A changes the value
of B (compare for instance lines 5 and 6 of the table in
Figure 2a) whereas for no value of the switch will an
intervention on B change the value of A (compare lines 3
and 4 and lines 7 and 8). You should conclude that A

 

→

 

B.
Recall that in a causal Bayes net, arrows between

variables specify how interventions to change the value
of one variable will affect the probability distributions of
other variables. Because the gear system is deterministic,
the causal Bayes net probability predictions reduce to
simple deterministic equations; the value of each variable

 

1

 

Throughout, we use the term 

 

inference

 

 to mean predicting the data
generated by a known causal structure and 

 

learning

 

 to mean using
observed data to discover the underlying causal structure.

 

2

 

Although we deal with actual human interventions in this paper,
‘natural experiments’ and counterfactual interventions are also possible
(see Woodward, 2003).

Figure 1 Causal Bayes nets representing different possible 
causal relationships between partying (P), wine drinking (W) 
and insomnia (I).
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X can be expressed as a function of the values of the
variables whose arrows point into X. Each equation cor-
responds to a particular causal structure (shown in Table 1).
Thus you can learn the causal structure of the system by
observing the data, determining which equation could
generate that data, and mapping that equation onto the
corresponding structure.

In the table, each variable has two possible values. S =
1 means S is on and S = 0 means S is off; A = 1 means
A spins and A = 0 means A does not spin (similarly for
B). Intervening on a variable forces it to have a particular
value. For example, removing a wheel from its spindle
forces the value of the wheel to be ‘not spinning’ (Pearl,
2000). Thus if  the structure is S

 

→

 

A

 

→

 

B, and we inter-
vene on S, then S will take the value it’s set to, A will
take the value of S, and B will take the value of A (i.e.
row 1, column 2). If  A is removed and forced not to spin
(that is, A = 0), the other equations still hold; B will take
the same value as A (column 3). However, if  B is set to
0, A will be unaffected because A = S (column 4). On
the other hand, if  the structure is S

 

→

 

B

 

→

 

A a different

Figure 2 The causal structures (boldface in the table indicates the interventions that change the outcome).

Table 1 Equations associated with the gear toy

1

Causal graph

2
Boolean 
equation

3
Intervention 

that forces A = 0

4
Intervention 

that forces B = 0

S = 1 S = 1 S = 1
A = S A = 0 A = S
B = A B = A B = 0

S = 1 S = 1 S = 1
A = B A = 0 A = B
B = S B = S B = 0

S = 1 S = 1 S = 1
A = S A = 0 A = S
B = S B = S B = 0

S = 1 S = 1 S = 1
A = S * B A = 0 A = S * B
B = S * A B = S * A B = 0
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pattern of  data will result. Thus the computational
formulas for the causal graphs produce the relation
between structure and evidence captured by the condi-
tional intervention principle. Because each structure
corresponds to a different formula, which generates a
different pattern or evidence, the structure can be uniquely
determined by the data.

This type of inference is not easily explained by other
accounts of causal learning. There is a plausible mecha-
nism underlying each of these relationships and the
gears’ movements are simultaneous and spatially contigu-
ous in all cases. Many researchers have suggested that
we evaluate the strength of candidate causes based on
their covariation with a known effect (Cheng, 1997, 2000;
Novick & Cheng, 2004; Shanks & Dickinson, 1987).
However, in this case the gears could be either causes or
effects. Indeed, causal learning very often requires deter-
mining whether X causes Y or Y causes X. Covariation
models do not explain such learning.

Recently causal Bayes nets have been used to model a
variety of causal reasoning problems (Gopnik & Schulz,
in press) both in adults (Glymour, 2001; Lagnado &
Sloman, 2002; Rehder & Hastie, 2001; Steyvers, Tenenbaum,
Wagenmakers & Blum, 2003; Tenenbaum & Griffiths,
2003; Waldmann & Hagmayer, 2001) and children (Gopnik,

Sobel, Schulz & Glymour, 2001; Gopnik, Glymour,
Sobel, Schulz, Kushnir & Danks, 2004; Schulz & Gopnik,
2004, ; Sobel, Tenenbaum & Gopnik, 2004; Kushnir &
Gopnik, 2005, in press). Some research suggests that
children can use information about interventions to make
inferences about the direction of simple causal relations
(Gopnik 

 

et al.

 

, 2004). However, as yet there have been
no studies looking at whether children or adults can use
evidence consistent with the conditional intervention
principle to learn more complex causal structures.

Moreover, even if children can make accurate inferences
given informative evidence, it is not clear how children
might get such evidence (outside the lab). Considerable
research suggests that both children and adults are poor
at designing informative experiments (Chen & Klahr, 1999;
Inhelder & Piaget, 1958; Kuhn, 1989; Kuhn, Amsel &
O’Laughlin, 1988; Masnick & Klahr, 2003). However, it
is possible that in the course of free play, children might
spontaneously generate evidence that could support
causal learning; children might then implicitly perform
accurate computations given the patterns of evidence. In
the following three experiments, we investigate children’s
ability to learn causal structures from the outcome of
interventions, children’s ability to infer the outcome of
interventions from knowledge of causal structure, and

Figure 3 Sample interventions and outcomes showing that A→B.
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the extent to which children’s spontaneous play generates
evidence that could support accurate causal learning.

 

Experiment 1

 

Procedure

 

Participants

 

Seventy preschool children (mean age: 56 months; range:
42–66 months) were assigned to one of four conditions:
Test Condition 1 (

 

n

 

 = 20); Test Condition 2 (

 

n

 

 = 20);
Test Condition 3 (

 

n

 

 = 14), and a Switchless Control Con-
dition (

 

n

 

 = 16). In this study and the following two studies,
approximately equal numbers of boys and girls particip-
ated (55% girls). The majority of children were white and
middle class but a range of ethnicities consistent with the
diversity of the local population was represented.

 

Test conditions

 

A custom-built electronic toy was used (see Figure 4).
The toy had two pegs; each could support one of four
uniquely colored gears. A new pair of gears was used on
every trial. Sensors detected the presence of the gears
and a hidden control allowed the experimenter to imple-
ment each of the four structures in Figure 2. A switch
on the front activated the toy. Two sets of four pictures
like those in Figure 2 were also used.

Trials began with the switch in the off  position. The
experimenter placed and removed each gear on the toy
in turn, explaining that she could ‘take the gears on and
off the machine’. She flipped the switch on to make both
gears spin simultaneously and flipped the switch off  so
that both gears were still. This provided evidence equi-
valent to lines 1–4, 5, and 7 in Figure 2.

Pilot work suggested that children could not keep
track of four pictures simultaneously so the children
were tested in three conditions in order to exhaustively
compare their ability to distinguish the structures. In
each condition, three pictures were set before the child
in random order. Children were told, ‘Here are some

ways the toy could work’. Children in Test Condition 1
saw pictures corresponding to 2a, 2b, and 2d. Children
in Test Condition 2 saw pictures corresponding to 2a,
2b, and 2c. Children in Test Condition 3 saw pictures
corresponding to 2a or 2b (particular picture counter-
balanced between subjects), 2c, and 2d. The pictures
were colored to match the gears on the toy on each trial
and were described in terms of the colors of the gears.
For example, for yellow and green gears, in 2a, children
were told, ‘This picture shows that yellow is pushing
green. Yellow makes green go’ (and the reverse for 2b);
for 2c they were told, ‘Green doesn’t push yellow and
yellow doesn’t push green. They each push themselves.’
For 2d they were told: ‘Green pushes yellow and yellow
pushes green. Both wheels push together.’ Children
were asked to redescribe each picture and were corrected
if  necessary.

The children received two trials in counterbalanced
order. In all conditions, the experimenter removed and
replaced each gear in turn, showing the children how the
toy behaved when both gears were present and when
each gear was isolated. In Test Condition 1, one trial
provided evidence for structure 2a, the other for 2d. In
Test Condition 2, one trial provided evidence for struc-
ture 2b, the other for 2c. In Test Condition 3, one trial
provided evidence for structure 2c, the other for struc-
ture 2d. For instance, for structure 2a the experimenter
removed gear A, turned on the switch, and B failed to
spin. She turned off  the switch, replaced A, flipped the
switch and both gears spun. She then removed gear B,
turned on the switch, and A spun (see Figure 3). This
procedure provided the information in lines 6 and 8 of
Figure 2a. A new pair of gears was used on each trial,
and the toy was rotated 90

 

°

 

 between trials to avoid any
position biases. After each trial, children were asked,
‘Can you give me the picture that shows how the toy is
working right now?’

 

Switchless Control Condition

 

Children in the Control Condition received the same
evidence as children in Group 1. However, before any
gears were removed, the toy was turned 180

 

°

 

 so children
couldn’t see the position of the switch. This manipulation
preserved the perceptual and associative relation between
the gears. If  children can use these cues to identify the
correct causal structure, they should respond like
children in Group 1. Formally, however, the evidence is
confounded: a gear might not spin either because a
causal gear was removed or because the switch was off.
If  children are relying on the pattern of interventions,
they should not uniquely prefer a causal structure in this
condition.Figure 4 Schematic of the gear toy.
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Results and discussion

 

Preliminary analyses revealed no effect of trial order. In
all three Test Conditions and on both trials, children were
significantly more likely to choose the correct picture
than expected by chance and to choose the correct picture
more than any other picture. The results from the four
conditions are presented in Table 2.

In Condition 1, given evidence for 2a, children chose
picture 2a above chance (

 

n

 

 = 20, 

 

p

 

 < .001 by binomial
test) and more than 2b (

 

n

 

 = 16, 

 

p

 

 < .001 by binomial
test) or 2d (

 

n

 

 = 19, 

 

p

 

 < .025 by binomial test). Given
evidence for 2d, children chose picture 2d above chance
(

 

n

 

 = 20, 

 

p

 

 < .001 by binomial test) and more than 2a
(

 

n

 

 = 19, 

 

p

 

 < .001 by binomial test) or 2b (

 

n

 

 = 18, 

 

p

 

 < .001
by binomial test). In Condition 2, given evidence for 2b,
children chose picture 2b above chance (

 

n

 

 = 20, 

 

p

 

 < .005
by binomial test) and more than 2a (

 

n

 

 = 16, 

 

p

 

 < .025 by
binomial test) or 2c (

 

n

 

 = 17, 

 

p

 

 < .025 by binomial test).
Given evidence for 2d, children chose picture 2d above
chance (

 

n

 

 = 20, 

 

p

 

 < .001 by binomial test) and more than
2a (

 

n

 

 = 19, 

 

p

 

 < .001 by binomial test) or 2b (

 

n

 

 = 18, 

 

p

 

 <
.001 by binomial test). Children chose correctly on both
trials significantly more often than expected by chance:
60% in Condition 1 (

 

n

 

 = 20, 

 

p

 

 < .001 by binomial test)
and 55% in Condition 2 (

 

n

 

 = 20, 

 

p

 

 < .001 by binomial test).
Similarly, in Condition 3, given evidence for 2c, chil-

dren chose picture 2c above chance (

 

n

 

 = 14, 

 

p

 

 < .005 by
binomial test) and more than 2d or the chain (

 

n

 

 = 12,

 

p

 

 < .05 by binomial test for both). Given evidence for 2d,
children chose picture 2d above chance (

 

n

 

 = 14, 

 

p

 

 < .001
by binomial test) and more than 2c or the chain (

 

n

 

 = 14,
for 2c 

 

p

 

 < .025 by binomial test); no children chose the
chain. Fifty-seven percent of the children chose the cor-
rect structure on both trials, significantly above chance
(

 

n

 

 = 14, 

 

p

 

 < .001 by binomial test).

These results suggest that children can use evidence
consistent with the conditional intervention principle to
distinguish chains from each other and from common
effects and conjunction structures. They did so even in
the absence of distinguishing mechanistic cues; the gears
moved simultaneously and interlocked so there were no
perceptual cues to the causal structure. Note that if
children had used simpler heuristics (e.g. spinning wheels
push other wheels; still wheels do not push other wheels)
they would not have made correct judgments about
structures 2c or 2d. Note also, that even though the
common effects and conjunction structures conflict with
adult knowledge about gear mechanisms, preschoolers
did not seem to find these structures more difficult.

It is possible that children might have assumed that no
gear could move spontaneously. Thus if  the switch failed
to move a gear on its own, the children might have
inferred that the other gear must push it. However, if
children used this heuristic to identify the causal struc-
ture, they could have chosen the interactive structure for
all conditions (i.e. this assumption might explain why
children believe that gears that do not move with the
switch 

 

are

 

 pushed but they do not explain why children
believe that gears that do move with the switch 

 

are not

 

pushed).

 

3

 

In the Switchless Control Condition, children also chose
among the structures at chance. Given evidence about
the gears (but not the switch) comparable to 2a, children
chose picture 2a at chance and likewise for 2d (

 

n

 

 = 16,

 

p

 

 = 

 

ns

 

 by binomial test for each). These results suggest
that the relative salience of the gears or the presence of
a single moving gear were not sufficient cues for children
to make accurate causal inferences. Overall, these results
are consistent with the possibility that children can use
evidence from interventions to learn a wide range of
causal structures.

 

Experiment 2

 

A central feature of causal Bayes net learning algorithms
is that they work in both directions. You can use evidence

Table 2 Number of children choosing each picture in
Experiment 1. Target responses in the Test conditions are
highlighted

Pictures

Group 1; n = 20 2a 2b 2d
Trial giving evidence for structure 2a 15 (75) 1 (5) 4 (20)
Trial giving evidence for structure 2d 2 (10) 1 (5) 17 (85)

Group 2; n = 20 2a 2b 2c
Trial giving evidence for structure 2b 3 (15) 13 (65) 4 (20)
Trial giving evidence for structure 2c 2 (10) 2 (10) 16 (80)

Group 3; n = 14 2a/2b 2c 2d
Trial giving evidence for structure 2c 2 (14) 10 (71) 2 (14)
Trial giving evidence for structure 2d 0 (0) 2 (14) 12 (86)

Switchless Control; n = 16 2a 2b 2d
Trial with evidence comparable to 2a 6 (37) 2 (13) 8 (50)
Trial with evidence comparable to 2d 4 (25) 4 (25) 8 (50)

Note: Percentage in parentheses (due to rounding, percentages may not sum to 100).

 

3

 

Additionally in a related study (Schulz, 2003) children were given
partial evidence about the causal structures (i.e. evidence about one
gear but not the other). Eighteen children were shown that both gears
spun together and then shown that the switch made one of the gears
spin by itself; 18 were shown the gears spinning together and then
shown that the switch failed to make a single gear spin. Even given a
forced choice between gears, children were unable to use the partial
evidence to identify the causal gear. This suggests that children rely on
the full set of information about interventions and outcomes to disam-
biguate the possible causal structures rather than simply assuming that
still gears are pushed.
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from interventions to learn causal structure but you can
also use knowledge of  causal structure to infer the
patterns of evidence that will result from interventions.
In Experiment 2, we told the children the causal struc-
ture and looked at what inferences they could make about
the outcome of interventions.

 

Procedure

 

Participants

 

Sixteen children (mean age: 54 months; range: 42–61
months) were tested.

 

Training

 

The experimenter introduced the gear toy to the child.
The experimenter placed and removed each gear on the
toy in turn, explaining that she could ‘take the gears on
and off  the machine’. She placed one gear on a peg (left /
right peg counterbalanced between children), flipped the
switch on, and the gear spun. The experimenter explained,
‘Some gears spin by themselves.’ She removed that gear,
surreptitiously reset the toy, and put a new gear on the
same peg. She flipped the switch on and the gear stayed
still. The experimenter explained, ‘Some gears do not
spin by themselves.’ The training familiarized children
with the toy’s function and affordances.

 

Test

 

The experimenter brought out two new gears and set
them on the toy. She flipped the switch on so that
both wheels spun and then flipped the switch off.
The experimenter held up a picture and said, ‘This
shows what is happening on the toy right now.’ The
pictures were described as in Experiment 1. Children
received four trials, one for each of  the four pictures
in Figure 2 (order counterbalanced). On each trial,
the experimenter placed a picture in front of  the
child, removed the right gear and held the left gear
above its peg. She said, ‘If  I put this gear down right
now and turn on the switch, will the gear spin or the
gear stay still?’ The experimenter repeated this with the
right gear.

 

Results and discussion

 

Preliminary analyses revealed no order effects. Children
were counted as answering correctly only if they answered
appropriately for both gears (i.e. for 2a, spin/still ; for 2b,
still/spin; for 2c, spin/spin; for 2d, still /still). Children’s
responses are shown in Table 3.

For each of pictures, 2a, 2b, and 2d, children made the
correct response significantly above chance (

 

n

 

 = 16, 

 

p

 

 <
.05 by binomial test for each); for picture 2c, there was
a trend for children to respond correctly (

 

n

 

 = 16, 

 

p

 

 = .08
by binomial test). Other than the correct response, no
pattern of responding approached significance for any
structure. Twelve percent of the children made the cor-
rect predictions on all four trials, significantly more than
expected by chance (

 

n

 

 = 16, 

 

p

 

 < .001 by binomial test).
The results of Experiment 2 suggest that children can

use knowledge of causal structure to predict the pattern
of evidence that will result from interventions. Knowing
the causal relationship between the gears, children were
able to predict how an intervention on the switch would
affect each gear individually. Consistent with the causal
Bayes nets formalism, these results suggest that children
can use knowledge of  causal structure to predict the
patterns of conditional dependence and independence
that result from interventions.

 

Experiment 3

 

In the preceding experiments, we controlled the informa-
tion children received. That is, we isolated the variables
and showed the children how each gear behaved indi-
vidually. Would children be able to generate this evidence
by themselves and accurately learn the causal structure
from the evidence of their own interventions? We did not
expect that children would design an appropriate experi-
ment to learn the causal structure (i.e. that they would
deliberately remove each gear in turn and test the
remaining gear with the switch); however, we believed
preschoolers might, in the course of play, spontaneously
produce the type of evidence that would support accur-
ate causal learning. We tested children both singly and
in dyads because we believed that children playing in
pairs might generate a broader range of interventions
(and thus be more likely to generate informative evidence)
than children playing by themselves.

Table 3 Number of children making each prediction in
Experiment 2. Target responses are highlighted (Chance
performance = 25%)

N = 16

Predictions

Spin/Still Still/Spin Spin/Spin Still/Still

2a 8 (50) 3 (19) 1 (6) 4 (25)
2b 2 (12) 8 (50) 3 (19) 3 (19)
2c 4 (25) 4 (25) 7 (44) 1 (6)
2d 3 (19) 3 (19) 2 (12) 8 (50)

Note: Percentage in parentheses.
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Procedure

 

Participants

 

Forty children (mean age: 57 months; range: 49–66 months)
were tested. Twelve children were assigned to a Single
Causal Chain condition; 12 to a Dyad Causal Chain
condition, and 16 to a Dyad Common Cause condition.

 

Materials

The materials used in Experiment 1 were used in this
experiment with minor modifications. First, since the
children might switch the position of the gears, two iden-
tical yellow gears were used, and the gears in the pictures
were colored to match (only pictures corresponding to
2a, 2b, and 2c were used in this experiment). Because the
position of the gears could now be transposed, it no
longer made sense to attribute the causal power directly
to the gears. Instead we taught the children that a hidden
motor was under one side of the toy or that there was a
motor under both sides. In each picture, we put the letter
‘M’ (for ‘motor’) to indicate that the pushing gear was
on the side with the motor. Thus for 2a, the M was on
Gear A; for 2b, the M was on Gear B; for 2c, the M was
on both gears. Because we did not attribute causal
power to the gears in this experiment, we did not test
children on the possibility that the gears interacted (i.e.
we did not include picture 2d).

Training

Trials began with the switch in the off  position and no
gears on the toy. The experimenter placed and removed
each gear on the toy in turn, explaining that she could
‘take the gears on and off  the machine’. She flipped the
switch on to make both gears spin simultaneously and
flipped the switch off  so that both gears were still. The
toy was set to implement a causal chain for children in
the Causal Chain conditions (particular chain, 2a or 2b,
counterbalanced between children) and set to a common
cause structure for children in the Common Cause
condition.

The children were then told: ‘There are three ways this
toy could work.’ All the children were given a choice of
the two chains and the common cause structure. The
children were told, ‘Do you know what letter this is?
This is the letter “M”. M stands for motor. Do you
know what a motor is? A motor is what is inside the toy
and makes the toy work. The motor is hidden inside
where you cannot see it.’

To illustrate each chain, the experimenter pointed to
the appropriate gears and children were told: ‘This

picture shows the motor is on this one and that this one
pushes this one.’ For the common cause structure,
children were told, ‘This picture shows that they both
have a motor. They don’t push each other. They each
push themselves.’ Children tested singly were asked to
re-explain each picture after it was introduced; children
tested in dyads took turns explaining the pictures until
each child successfully explained each picture.

The experimenter then shuffled the pictures, pointed
to the gears on the toy and asked the children to choose
the picture that showed ‘This one pushing this one’; or
that ‘the wheels push themselves’. All children were able
to choose the correct picture. The experimenter then
removed all three pictures and gave the two gears to the
child. The children were told: ‘Go ahead and play with
the toy and try to figure out how it works. You can do
anything you like.’ The experimenter moved out of sight
and supervised the children through a videocamera. If
children themselves did not stop playing, the experi-
menter terminated the play period after 5 minutes.

For children tested singly, the experimenter laid out the
three cards at the end of the play period and asked the
children to redescribe the three cards. She then asked
the child, ‘Can you give me the picture that shows how
the toy works?’ The same procedure was followed for
children tested in pairs except that one child was ran-
domly chosen to go first. The other child was escorted
out of earshot to a table with art supplies and seated
facing away from the gear toy. After the first child made
a response, the children switched positions.

Results and discussion

Children were coded both for the evidence they gener-
ated and the structures they chose. Children were given
a score of 2 if  they put a gear on only the left peg,
flipped the switch on and off  and also put a gear on only
the right peg and flipped the switch on and off. Children
were given a score of 1 if  they only tested a gear in one
of the two positions. Children were given a score of zero
if  they never tested the gears singly. (Note that all of the
children also generated a wide range of actions we did
not code – ranging from treating the gears like finger
puppets to rolling the gears on the table like wheels.)
Children’s responses are shown in Table 4.

In the Single Causal Chain condition, half  of  the
children generated the complete evidence. Six of the 12
children (50%) received a score of 2; two children (17%)
received a score of 1; the remaining four children (33%)
received a score of  0. By contrast, almost all of  the
children who played in pairs generated the evidence. In
the Dyad Causal Chain condition, 100% of the children
received a score of  2. In the Dyad Common Cause
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condition, 10 of the 16 children (63%) received a score
of 2; four children (25%) received a score of 1; two received
a score of 0 (12%). Overall, children were more likely to
generate complete evidence when they played in dyads than
when they played alone (χ 2(1, N = 40) = 9.41, p < .01).

Looking only at the children who generated the com-
plete set of evidence, seven of the 18 children (39%) who
generated complete evidence for the causal chain (whether
singly or in dyads) chose the correct causal chain. Ten
children (55%) chose the common cause structure. Only
one child (5%) chose the incorrect causal chain. Chil-
dren were more likely to choose the correct causal chain
than the incorrect chain (n = 8, p < .05 by binomial test)
but equally likely to choose the correct chain and the
common cause structure. In the Common Cause condi-
tion, nine of the 10 children (90%) who generated the
complete evidence chose the correct structure. Only one
child incorrectly chose a chain. Children chose the cor-
rect structure more often than chance and more often
than the incorrect structure (n = 10, p < .05 by binomial
test). The difference between conditions was significant.
When the toy was set to a chain, children chose the cor-
rect chain more than when the toy was set to a common
cause; when the toy was set to a common cause, children
chose the common cause more than when the toy was
set to a chain (χ2(1, N = 38) = 3.89, p < .05).

These results suggest that children in this condition
had a bias towards the common cause structure, possibly
because the perceptually identical gears led the children
to assume a causal symmetry between them. Note that
Experiment 3 was less well controlled than the previous
experiments. Because we did not ask children to distin-
guish the common cause structure (2c) from the interactive
causal structure (2d), we cannot tell if  children genuinely
learned that the structure was a common cause or simply
preferred the symmetric causal structure. Nevertheless,

the difference between conditions suggests that children
were also learning from the evidence; although children
in both conditions tended to default to the common
cause structure, they were more likely to choose the correct
structure (chain or common cause) when the evidence
was consistent with that structure. Note also that in
playing freely, children generated many interventions
besides the target interventions and were exposed to
variable time delays both between when they generated
evidence on one gear and the other, and when they gen-
erated the evidence and were asked the test questions.
Because of these factors, children’s self-generated data
were much noisier than the data they observed in the earlier
experiments. Nonetheless, children were often able to
learn the correct causal structure from the evidence of
their own interventions.

General discussion

The results of these experiments suggest that preschoolers
can use formal patterns of evidence from interventions
to learn the causal structure of events and, conversely,
can use knowledge of causal structure to predict the out-
come of novel interventions. These findings are consistent
with the conditional intervention principle and support
the idea that the same assumptions that underlie the
causal Bayes nets formalism may also be fundamental to
children’s causal reasoning. Moreover, in the course of
their free play, children both generate evidence that could
support accurate causal learning and learn from the evi-
dence of their own interventions. This suggests that these
formal inferential processes could support causal learning
in real-world situations and not just in the laboratory.

These results are not easily explained by other accounts
of causal learning. No domain-specific features differen-
tiated the causal structures (i.e. there was a plausible
causal mechanism underlying every structure and no
cues about time order or contact causality distinguished
the structures). Moreover, children did not seem to be
influenced by prior knowledge about how gears actually
work; they were as likely to favor common cause and
interactive structures as causal chains. The results are
also not easily explained by other domain-general
accounts of causal learning. In our study, children had
to decide whether each gear played the role of a cause or
an effect, and had to discriminate causal chains from
common causes; in standard domain-general accounts
of causal learning (e.g. Cheng, 1997, 2000; Shanks &
Dickinson, 1987), the effect is established in advance and
the learner is asked only to discriminate among candid-
ate causes of that effect (by their strength of association
or patterns of covariation).

Table 4 Children’s responses in Experiment 3

Children generating complete (2), 
partial (1), or no (0) evidence in 
each condition 2 1 0

Singles – Causal Chain (n = 12) 6 (50) 2 (17) 4 (33)
Dyads – Causal Chain (n = 12) 12 (100) 0 (0) 0 (0)
Dyads – Common Cause (n = 16) 10 (62) 4 (25) 2 (13)

Children choosing each picture 
(of those who generated 
complete evidence)

Pictures

Correct 
chain

Incorrect 
chain

Common
cause

Causal Chain (n = 18) 7 (39) 1 (5) 10 (55)
Common Cause (n = 10) 0 (0) 1 (10) 90 (100)

Note: Percentage in parentheses.
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However, this research also raises several questions.
The causal Bayes net formalism was developed to handle
probabilistic data; in these experiments the data were
deterministic. Although the conditional intervention
principle is equally valid for both types of input, we do
not know whether young children can use the condi-
tional intervention principle to learn about causal struc-
tures when the data are stochastic. This question seems
particularly critical given that, in the real world, children
may more often be exposed to incomplete, noisy infor-
mation than to deterministic input. Further research
must look at how probabilistic evidence affects children’s
causal learning.

Also, although we have suggested that interventions
may be central to how children think of causal relation-
ships, evidence from interventions does not account for
all of our beliefs about causes. Evidence from interven-
tions does not seem to explain why, for instance, children
assign a more important causal role to the insides than
the outsides of many entities (e.g. Gelman & Wellman,
1991). Neither does the interventionist account of cau-
sation seem to explain why we believe that causal relation-
ships are mediated by mechanisms of  transmission.
Further research must explore how formal inferences
about causation, consistent with the interventionist account,
interact with substantive, domain-specific concepts.

In their everyday life, children intervene widely on the
world and see a wide range of interventions performed
by others. Evidence from such interventions may give
children a powerful learning mechanism for learning
causal structure from data. These studies suggest that at
least in generative, deterministic cases, preschoolers can
use the conditional intervention principle to learn causal
structures from patterns of evidence and to predict pat-
terns of evidence from causal structure. Children seem to
be able to make these inferences in the absence of differ-
ential spatiotemporal information and prior knowledge
about particular causal mechanisms, and well before they
can design controlled experiments themselves. Learning
in very young children seems to rely on some of the same
formal principles that underlie scientific discovery. In
turn, these principles may help children develop intuitive
theories about the world.
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