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Causal Learning Mechanisms in Very Young Children: Two-, Three-,
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Three studies investigated whether young children make accurate causal inferences on the basis of
patterns of variation and covariation. Children were presented with a new causal relation by means of a
machine called the “blicket detector.” Some objects, but not others, made the machine light up and play
music. In the first 2 experiments, children were told that “blickets make the machine go” and were then
asked to identify which objects were “blickets.” Two-, 3-, and 4-year-old children were shown various
patterns of variation and covariation between two different objects and the activation of the machine.
All 3 age groups took this information into account in their causal judgments about which objects were
blickets. In a 3rd experiment, 3- and 4-year-old children used the information when they were asked to
make the machine stop. These results are related to Bayes-net causal graphical models of causal learning.

For the past 15 years, a number of cognitive developmentalists
have argued that children’s cognitive development is similar to
theory formation and change in science (Carey, 1985; Gopnik,
1988; Gopnik & Meltzoff, 1997; Gopnik & Wellman, 1994; Keil,
1989; Wellman, 1990). The assumption behind their work has
been that there are common representations and rules— common
cognitive mechanisms—that underpin both of these important
types of learning. However, there has been little research specify-
ing in detail just what those learning mechanisms might be like.

In this article we explore one such mechanism that allows
children to learn about new causal relations. Causal learning is
particularly important in theory formation and change. Theories
specify the causal relations among objects and events. Learning a
new theory involves learning about a new set of causal relations.
A number of studies suggest that adults both have a great deal of
causal knowledge and are adept at learning about new causal
relations. In cognitive psychology, investigators have found that
adults can make accurate inferences about causal relations on the
basis of observations of the variation and covariation among
events (see, e.g., Cheng, 1997; Shanks, 1985; Spellman, 1996;
Tenenbaum, 1999). In social psychology, investigators have found
that adults also make complex causal inferences when they explain
the actions of others. These inferences often involve discounting
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some possible causes of an action in favor of others (see, e.g.,
Kelley, 1973; McClure, 1998; Morris & Larrick, 1995). Are sim-
ilar abilities also present in young children?

In the past, developmentalists assumed that very young children
had little causal knowledge. Piaget, for example, described infants
and preschoolers as “precausal” (Piaget, 1929, 1930). More re-
cently, however, investigators have demonstrated that very young
children understand important causal relations among physical
objects (Bullock, Gelman, & Baillargeon, 1982; Leslie & Keeble,
1987; Oakes & Cohen, 1990; Spelke, Breinlinger, Macomber, &
Jacobson, 1992), biological kinds (Gelman & Wellman, 1991;
Inagaki & Hatano, 1993; Kalish, 1996), and psychological entities
(Flavell, Green, & Flavell, 1995; Gopnik & Wellman, 1994; Per-
ner, 1991). Before age 5, children seem to understand important
things about how physical objects cause each other to move; how
biological entities cause growth, inheritance, and illness; and how
desires, emotions, and beliefs cause human actions. Young chil-
dren can make appropriate causal predictions, provide causal ex-
planations, and even make counterfactual causal claims (Harris,
German, & Mills, 1996; Wellman, Hickling, & Schult, 1997).

Moreover, there appear to be systematic changes in the kinds of
causal knowledge that children possess between birth and age 5
(see, e.g., Gopnik & Meltzoff, 1997). There are even some studies
(Slaughter & Gopnik, 1996; Slaughter, Jaakkola, & Carey, 1999)
that suggest that exposure to relevant evidence about a particular
domain can accelerate the development of a causal understanding
of that domain. This research suggests that children are actually
learning about these causal relations from evidence.

This work has profoundly changed our view of young children’s
cognitive abilities. However, simply charting children’s develop-
ing natural understanding of causal relations does not by itself tell
us how that knowledge is represented or how, or even whether, it
is learned. Several investigators have suggested that children’s
early knowledge of folk physics, biology, and psychology might
consist of elaborations of innate domain-specific explanatory prin-
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ciples (Keil, 1995; Leslie & Keeble, 1987; Spelke et al., 1992).
Children might not, in fact, have more general techniques for
inferring new causal structure. Alternatively, children might gain
much of their causal knowledge through instruction from parents
or teachers, rather than through observation or inference.

In fact, some studies have suggested that children have difficulty
understanding how patterns of evidence bear on new causal hy-
potheses (Kuhn, 1977, 1989). In these studies, children were asked
to say what kinds of evidence would be needed to verify or falsify
a hypothesis. Children (and sometimes adults) often made errors.
Such studies suggested that young children might have difficuity
actually bringing evidence to bear on causal hypotheses. However,
it is also possible that children might actually draw correct causal
inferences from patterns of evidence without understanding that
that is what they are doing. They might have the cognitive capacity
to implicitly draw appropriate causal inferences without having the
meta-cognitive capacity to consciously decide which evidence will
verify a causal hypothesis.

To work out the child’s learning mechanisms more precisely, we
need a method that will allow us to see, on-line, how children learn
about a novel causal relation (similar to Siegler & Crowley’s
[1991] microgenetic method). Moreover, we would like to be able
to control the kinds of evidence children have about this new
relation and to see whether they draw genuinely causal conclusions
on the basis of that evidence. And we would like to be able to test
whether children can learn new causal relations that were not given
innately and were not the result of explicit instruction.

In earlier work, we developed such a method—*"the blicket
detector.” The blicket detector is a machine that lights up and plays
music when some objects (“blickets™), but not others, are placed
on it. Children are thus confronted with a new, nonobvious, causal
relation. Something about some of the objects makes them have
the causal power to light up the machine. Note that the children do
not themselves act on the detector; instead, they simply observe the
contingencies between the objects and the effect. In earlier studies
(Gopnik & Sobel, 2000; Nazzi & Gopnik, 2000), children as young
as 2 years of age quickly learned about this new causal relation and
used it to name and categorize the objects. Children saw that some
objects made the machine go and that other objects did not. They
were then told that one of the causally efficacious objects was a
blicket, and they were asked to find another blicket. Very young
children extended the term “blicket” to objects with similar causal
powers.

However, these experiments raised a deeper question: How do
children learn about that new causal relation? What exactly is it in
their experience that tells them that the blickets are, in fact,
causally related to the machine and the nonblickets are not?

There are two broad possibilities. Children could use what we
might call substantive principles about particular causal relations.
Children could use their prior knowledge to make top-down infer-
ences about when particular types of events are likely to be
causally related to other types of events. They might assume, for
example, that pushing buttons typically makes machines go. They
might then apply this prior knowledge about how other machines
work to the blicket detector and look for a button to push.

But children could also use what we might call formal princi-
ples, principles about the pattern of contingencies between the
presence of the object, the activation of the machine, and other
events. They could examine how the presence or absence of

particular blocks is correlated with the behavior of the machine
and use this information to make more data-driven causal infer-
ences. Such inferences would not depend on prior knowledge.
Children undoubtedly use both types of information, but in the
current study we focus on the latter possibility.

Screening Off

People often conclude that there are causal relations between
two kinds of events by observing what Hume (1739/1978) called
constant conjunctions between those two kinds of events. If when-
ever an event of kind A happens, it is closely followed by an event
of kind B, one infers that As cause Bs. However, there is a
notorious problem with this sort of reasoning—the association of
As and Bs might be due to other events, Cs, that produce B and are
associated with A. A does not cause B, but whenever C occurs,
both A and B will occur together or will more probably occur
together. For example, a woman may notice that when she drinks
wine in the evenings, she is likely to have trouble sleeping. It could
be that the wine is causing her insomnia. But suppose she usually
drinks wine in the evenings when she goes to a party. The excite-
ment of the party might be keeping her awake, independently of
the effect of the wine. Drinking wine might be associated both with
excitement and insomnia, but it would not cause the insomnia.
Drinking wine would be associated with insomnia, and yet it
would be wrong to conclude that there was a causal relation
between the two.

In such cases, if A, B, and C can be manipulated, we can
determine the influence of A on B by intervening to alter whether
A is present or absent—without altering the presence or absence of
C—and observing the resuiting variation in B. In our example, the
woman could try sober partying or solitary wine drinking and
observe the effects of these interventions on her insomnia. But in
many circumstances we may want causal information before we
can carry out such informal experiments. For over a century, the
standard statistical strategy for making such inferences has been to
consider whether A and B are associated in the subset of all
examined cases in which C is present or in the subset of all
examined cases in which C is absent. If A and B are not associated
in either subset, one infers that A does not cause B. In that case, A
and B are commonly said to be independent conditional on C (and
on the absence of C). Any causal connection between A and B is
removed by holding C constant. In other words, there is no direct
causal connection between A and B. Introducing a more descrip-
tive terminology, Hans Reichenbach, the late philosopher of sci-
ence, said that in such circumstances, C screens off A from B
(Reichenbach, 1956).

Reasoning of this kind is ubiquitous in science: It is the rationale
behind both techniques of experimental design and statistical
methods such as partial correlation and regression. Screening-off
reasoning by itself does not always lead to correct conclusions.
There are various possible, if improbable, circumstances in which
A does indeed influence B (and an experimental intervention
would show as much) but C screens off A from B. The converse
positive inference, that if A and B are not screened off by any
observed C, then A causes B, is also not always correct, especially
if other unobserved variables are involved.

However, while screening-off reasoning by itself does not in-
evitably lead to correct causal inferences, screening-off informa-
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tion can be combined with additional assumptions to draw prov-
ably reliable causal conclusions. In the artificial intelligence
literature on causal Bayes nets, such assumptions have been for-
malized and their adequacy proved (Pearl, 1988, 2000; Spirtes,
Glymour, & Scheines, 1993, 2000). Moreover, work on causal
Bayes nets has provided algorithms for reliably finding causal
relations from data that exhibit (or fail to exhibit) screening-off
relations (Glymour & Cooper, 1999). These algorithms can un-
cover quite complex causal structures involving many variables,
and they can even generate unobserved variables. In short, there
are computational methods that allow one to draw complex and
normatively accurate causal inferences from data about patterns of
dependent and independent probability among events.

This means that, at least in principle, considering such
screening-off relations could help adults and children make accu-
rate causal inferences. We know that there are computational
procedures that can derive provably correct causal conclusions
from information about dependent and independent probability.
Given the evolutionary advantages of accurate causal inference,
the human mind might be designed to employ such procedures, at
least in part.

We can draw an analogy to the visual system. This system is
designed to infer accurate information about the structure of the
spatial world from the patterns of visual input that arrive at the
retina. In vision science, psychologists and computer scientists
have collaborated to uncover the mechanisms that allow these
inferences to be made. Computer scientists can discover algo-
rithms that will accurately recover spatial information from visual
data (and implement those algorithms in computers). Psychologists
can then examine whether those algorithms are instantiated in the
visual system. In fact, as it turns out, there is often a great deal of
convergence between the two endeavors.

Similarly, we can think of the human theory-formation system
as a system designed to infer accurate information about the
underlying causal structure of the world from patterns of percep-
tual input. Theories and theory formation let us go from the
patterns of evidence we see around us to a deeper and more
accurate representation of causal structure. The normative compu-
tational work means that we can investigate whether adults and
children make causal inferences when correct inferences are pos-
sible and avoid making such inferences when they are not, and
ideally, we can investigate the detailed procedures by which such
inferences are, in fact, made in adults and children. Of course,
these procedures may or may not be similar to the procedures used
in computer science. However, the example of vision science holds
out hope that the two enterprises might converge.

The first step in this research program is to determine whether
the information that one variable does or does not screen off
another pair of variables is, in fact, used in causal judgments. The
cognitive studies with adults (Cheng, 1997; Cheng & Novick,
1990; Shanks & Dickinson, 1987; Spellman, 1996) suggest that
adults do use screening-off information in causal inference. Sim-
ilarly, the causal discounting that is studied in social psychology
involves a kind of screening-off reasoning and can be represented
in Bayes net terms (Pearl, 1988). Adults will make judgments
about whether one event caused another using this kind of covaria-
tion information. But adults, particularly the university undergrad-
uates who are the typical participants in these studies, have exten-
sive experience and often explicit training in causal inference.

At the other end of the spectrum, there is evidence for a kind of
primitive screening off in the animal conditioning literature. In
fact, in classical conditioning, animals show changes on behavioral
measures of strength of association that are similar to screening-off
relations. In the phenomenon of blocking, an animal who is trained
to respond to a light followed by a shock, and then is trained to
respond to a light and tone in combination followed by the shock,
will fail to have a fear response to the tone by itself (Kamin, 1969).
The animal will, in a sense, screen off the tone. Presumably, the
evolutionary basis for this phenomenon is that, in nature, screened-
off events are unlikely to be causes of negative effects and so need
not be avoided.

However, this sort of conditioning seems very different from
adults’ causal judgments. Classical conditioning involves only a
limited number of ecologically significant events such as shock or
food, but causal judgment extends to a wide variety of new events.
Classical conditioning requires many trials to establish a response,
whereas causal judgments can be made on the basis of just a few
relevant pieces of information. Classical conditioning does not
support new interventions—although animals may have a fear
response when the light occurs, they do not seem able to craft an
intervention that would alter the effect (say, by actively interven-
ing to eliminate the light and thus the shock). In contrast, if people
judge that one event caused another, they can try to bring about the
cause in order to bring about the effect. Finally, in causal judg-
ment, people can combine information about a new causal relation
with earlier causal information to craft new and more complex
interventions. For example, if one concludes that A makes B go,
one may also conclude that removing A will stop B.

Will very young children use screening-off information in a way
that goes beyond mere conditioning and fulfills these criteria for
genuine causal judgment? If they do, that suggests that powerful
capacities for causal learning are in place very early and may play
an important role in the acquisition of causal knowledge. Alterna-
tively, these capacities might themselves be the result of extensive
experience or training and emerge only in relatively sophisticated
adults. In that case, we would have to look to other mechanisms to
explain the changes in causal knowledge in childhood. The current
experiments were designed to answer the following question: In
simple cases in which correct causal inference is possible from
data showing patterns of dependent and independent probability,
will very young children appropriately draw genuinely causal
conclusions?

Experiment 1

Method

Participants. Nineteen 3-year-olds and 19 four-year-olds were re-
cruited from two urban area preschools. Three children from each group
were excluded from the experiment for failing control questions (see
below), which left a sample of 16 three-year-olds ranging in age from 3
years 1 month to 3 years 10 months (mean age = 3 years 6 months) and 16
four-year-olds ranging in age from 4 years 6 months to 5 years 3 months
(mean age = 4 years 9 months). Approximately equal numbers of boys and
girls participated. Although most children were from White, middle-class
backgrounds, a range of ethnicities resembling the diversity of the popu-
lation was represented.

Materials. The same specially designed “blicket detector” box that was
used by Gopnik and Sobel (2000) and Nazzi and Gopnik (2000) was used
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in this experiment. The detector measured 5 X 7 X 3in. (13 X 18 X 8 cm)
and was made of wood (painted gray) with a red lucite top. Two wires
emerged from the detector’s side. One was plugged into an electrical outlet,
and the other ran to a switchbox. If the switchbox was in the “on” position,
the detector would light up and play music when an object was placed on
it. If the switchbox was in the “off” position, the detector would do nothing
when an object was placed on it. During the experiment, this switchbox
wire ran to a confederate who surreptitiously flipped the switch on to allow
an object to set the machine off or flipped the switch off to ensure that an
object would not set the machine off. The wire and switchbox were hidden
from the children’s view, and they had no suspicion of the role of the
confederate, whom they never saw. The apparatus was designed so that
when the switch was on, the box “turned on” as soon as the object made
contact with it, and the box continued to light up and play music as long
as the object continued to make contact with it. It “turned off” as soon as
the object ceased to make contact with it. This design provided a strong
impression that something about the object itself caused the effect.

Seventeen wooden blocks of different colors and shapes were also used.
No two blocks were identical.

Procedure. All children were tested by a male experimenter with
whom they were familiar. Children were brought into a private game room
in their school and sat facing the experimenter at a table. The detector was
on the table. Children were introduced to the blicket detector by being told
that the machine was a “blicket machine” and that “blickets make the
machine go.” Children were told that the experimenter “was going to put
some things on the machine” and wanted the child to tell him “which things
were blickets.”

Training phase. Three blocks were then placed in front of the machine.
One at a time, each of the blocks was placed on the machine for approx-
imately 3 s. Two of them (randomly determined) made the machine light
up and play music; one did not. Children were then asked if each block was
a blicket. If the child answered incorrectly, he or she was reminded that
“blickets make the machine go,” and the demonstration and question were
repeated. We then repeated this pretest with another set of three blocks to
ensure that the children understood the relationship between an object’s
setting off the machine and its being labeled a “blicket.”

Test phase. During the test phase, the children were shown three types
of tasks. In the one-cause tasks, children were shown two blocks, A and B.
The experimenter placed each block on the detector by itself, in counter-
balanced order. Block A activated the machine, and Block B did not. The
experimenter then placed both blocks on the machine together, simulta-
neously, and the machine activated. He then placed both blocks on the
machine again, and again the machine activated. The experimenter then
took the blocks off the machine simultaneously and placed them on the
table. He then pointed to each block, in counterbalanced order, and said, “Is
this one a blicket?” Children received two of these tasks, counterbalanced
for the spatial location of the block that set off the machine. Different
blocks were used on each trial for each child.

In the swo-cause task, children were shown two new blocks. The
experimenter placed each block on the detector by itself three times, in
counterbalanced order. One of the blocks, A, activated the detector all three
times. The other block, B, did not activate the detector the first time but did
activate it on the following two presentations. The experimenter then
pointed to each block and said, “Is this one a blicket?” Children again
received two of these tasks, counterbalanced for spatial location.

If children infer causal relations from associations and the absence of
causal relations from the absence of associations or the absence of condi-
tional associations (i.e., if they pay attention to screening-off relations),
they should come to different conclusions about the causal structure of the
one-cause and two-cause tasks. In the one-cause task, children should
conclude that A is a blicket but that B is not, because A is associated with
the effect when B is absent, but B is associated with the effect only when
A is also present. That is, the effect is dependent on A independent of B,
but the effect is only dependent on B conditional on A. Therefore, A causes

the effect and B does not. Notice that this conclusion should be reached
despite the fact that children see B positively associated with the effect
twice and negatively associated with the effect only once.

The contingencies between the blocks and the effect were the same in
the one-cause and the two-cause tasks. A was associated with the effect all
three times, and B was associated with the effect two out of three times. In
the two-cause case, however, an analogous procedure should tell the
children that both A and B are blickets, because they each independently
increase the probability that the machine will be activated. There are two
independent causes of the effect.

Notice also that the one-cause and two-cause tasks are similar in other
ways and thus act as controls for each other. Children might use a simple
strategy or bias to choose the A block rather than the B block as the blicket
in the one-cause task. For example, rather than use screening-off informa-
tion, they might choose the object that activated the detector more often, or
reject the one that had one negative trial, or pay attention only to the first
trial of each block. However, in each of those cases they should also choose
the A block and reject the B block in the two-cause task.

Finally, children were given a control task to ensure that they were
on-task, understood the nature of the task, and could answer the questions
correctly. It was similar to the pretest. Three blocks were placed in front of
the machine. The experimenter placed each block on the machine one at a
time. At least one and at most two of the blocks (randomly determined)
activated the machine. The experimenter then replaced the blocks on the
table, pointed to each block, and asked, “Is this one a blicket?” In order to
be included in the analysis, children had to label only the blocks that
activated the machine as a blicket. Three children from each age group
were excluded for this reason.

The five tasks were presented in a random order to the children with the
constraint that the first task not be the control task.

Results and Discussion

Initial ¢ tests revealed no difference in the children’s perfor-
mance between the two different one-cause trials or between the
two different two-cause trials, so performance was averaged across
the two trials of each type. Table 1 shows children’s performance
on both the one-cause and two-cause tasks for the block that set the
machine off 100% of the time (i.e., the A block) and the block that
set the machine off 66% of the time (i.e., the B block). A 2 (age:
3-year-olds vs. 4-year-olds) X 2 (contingency: 100% vs. 66%) X 2
(task: one-cause vs. two-cause) mixed analysis of variance
(ANOVA) was performed with contingency and task as within-
subject variables and age as a between-subjects variable. There
was a main effect of age; 3-year-olds said more blocks were
blickets than did 4-year-olds, F(1, 30) = 10.16, p < .005,
MSE = 0.34. There was a main effect of task; children were more
likely to say an object was a blicket in the two-cause tasks than in

Table 1

Mean Number of Trials (Out of 2) on Which Children in
Experiment 1 Said an Object Was a Blicket, as a Function of
Age, Task, and Contingency

One-cause task Two-cause task

100% 66% 100% 66%

Age M %o M %o M % M %o

Jyears (n =16) 2.00 100 131 66 194 97 169 85
4 years (n = 16)  1.81 91 031 16 194 97 156 78
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the one-cause tasks, F(1, 30) = 27.13, p < .00l, MSE = 0.21.
There was also a main effect of contingency; children were more
likely to say that the 100% blocks were blickets than that the 66%
blocks were, F(1, 30) = 54.73, p < .001, MSE = 0.29.

In addition, several interactions were significant. First, there was
a significant two-way interaction between task and contingency,
F(1, 30) = 19.74, p < .001, MSE = 0.25. Examination of Table 1
reveals that on the one-cause tasks, children in both age groups
were more likely to say that the 100% A block was a blicket than
that the 66% B block was: for 3-year-olds, #(1, 15) = 3.47, p <
.005; for 4-year-olds, #(1, 15) = 7.35, p < .001. In contrast, on the
two-cause tasks, these differences were not significant; both
groups of children tended to say that both blocks were blickets.
Interestingly, in these tasks, children were quite happy to say that
the 66% object was a blicket in spite of the negative trial.

In addition, there were significant two-way interactions between
task and age, F(1, 30) = 10.76, p < .005, MSE = 0.21, and
between contingency and age, F(1, 30) = 6.09, p < .05,
MSE = 0.29. These interactions are explained by the fact that the
3-year-olds were significantly more likely to say that the 66% B
block was a blicket in the one-cause tasks than were the 4-year-
olds, #(1, 30) = 4.02, p < .001. There were no other effects of age.

We also examined whether children were significantly more -

likely to choose the B block in the two-cause task than in the
one-cause task. In fact, this was true for both age groups, although
the effect was more marked in the 4-year-olds: for the 4-year-olds,
«(1, 15) = —5.00, p < .001; for the 3-year-olds, #(1, 15) = —1.86,
p < .05.

In short, the 4-year-olds, in particular, responded closely in
accordance with the assumption that they took features that were
associated and not screened off by a third feature to be causally
related and did not take features that were screened off by a third
feature to be causally related. Four-year-olds were very likely to
say that A was a blicket and B was not in the one-cause task, and
they were very likely to say that both A and B were blickets in the
two-cause task. The 3-year-olds’ pattern was consistent with the
same assumption with one possible exception. In the one-cause
task, although 3-year-olds said that the 100% A block was more
likely to be a blicket than was the 66% B block, they still said that
the 66% B block was a blicket a majority of the time. However,
recall that the children were asked a yes/no “Is this a blicket?”
question. Some of these younger children may have had a “yes
bias,” a tendency in general to say that objects were blickets. In
fact, recall that, overall, 3-year-olds were more likely to say that
objects were blickets than were 4-year-olds. This yes bias may
have influenced the 3-year-olds’ responding.

Experiment 2

In Experiment 2, we set out to see if we could demonstrate
similar inferences in even younger children: 2-year-olds. More-
over, to eliminate the possibility of a yes bias we modified the task
so that children had to answer a forced-choice question between
two options rather than a yes/no question. We also made the causal
nature of the detector even more salient by allowing the children
themselves to place blocks on the detector during the pretest and
by reminding them about the detector during the tasks.

Method

Participants.  Twenty 30-month-old children were recruited from a list
of babies born in the vicinity of an urban-area university. Four children
were excluded for failing control questions (see below), which left a
sample of 16 thirty-month-old children. Approximately equal numbers of
boys and girls participated in the study. Although most children were from
White, middle-class backgrounds, a range of ethnicities resembling the
diversity of the population was represented.

Materials. The same “blicket detector” and a similar set of 15 blocks
from Experiment 1 were used in this experiment. One of those blocks was
a4 X 4 X 2 cm white block. No other block was white or had that shape.
The other 14 blocks were made into 7 pairs such that both blocks in each
pair were either similar in shape (e.g., one 4 X 6 X 2 cm rectangle and one
4 X 4 X 4 cm cube) or dissimilar in shape (e.g., one 4 X 1.5 cm cylinder
and one 4 X 6 X 2 cm triangle) to the white block.

Procedure.  All children were tested by a male experimenter with their
mothers present. Children were brought into a game room at the University
and after a brief familiarization session were introduced to the blicket
detector in the same manner as in Experiment 1. The experimenter told the
children that the machine was a “blicket machine” and that “blickets made
the machine go.” The experimenter took out the white square block and
said, “This is a blicket.” The blicket was then placed on the machine, which
went off. The experimenter said, “See, it makes the machine go.” Children
were asked if they wanted to try. All children tried the blicket on the
machine, which always went off. Children were told that “the blicket
always makes the machine go.” Then the blicket was put away and children
were told that the experimenter wanted to know which of the new objects
“was like the blicket.”

Training phase. Children were then shown two blocks. Each was
placed on the detector separately. One block made the detector go off, and
the other did not. The white square block (the blicket) was then brought out
and placed on the detector, which went off, and the experimenter said, “The
blicket makes the machine go.” Children were asked which block “was like
the blicket.” If the child chose the object that had set the machine off, the
experimenter moved on. If not, the two test blocks were again demon-
strated on the machine, and the question was asked again. We then repeated
this pretest with another pair of blocks to ensure that the children under-
stood the nature of the machine and the question.

Test phase. 'The one-cause and two-cause tasks were similar to those in
Experiment 1. In the one-cause tasks, children saw two blocks. Each was
placed on the detector by itself once. One activated the machine, and the
other did not. Then both objects were placed on the machine together, and
the machine activated. This was done twice. The procedure thus far was
identical to the procedure in Experiment 1. Then the experimenter placed
the established blicket (the white square block) on the machine, and it
activated the machine. The experimenter said, “Look, the blicket makes the
machine go,” and then asked which of the other two objects “was like the
blicket.”

In the two-cause tasks, the experimenter placed each of the two blocks
on the machine three times. One block activated the machine all three
times. The other did not activate it the first time but did so the second and
third times, again in exactly the same way as in Experiment 1. Then the
established blicket (the white square block) was brought out, and it acti-
vated the machine. The experimenter said, “Look, the blicket makes the
machine go,” and then asked which of the other two objects “was like the
blicket.”

Finally, a control task similar to that in Experiment 1 was also given.
Children were shown two blocks. Each was put on the machine separately.
One activated it, and one did not. Children were asked which of the two
“was like the blicket.” Only children who categorized the block that had set
off the machine with the blicket in the control trial were included in the
analysis. Four children were excluded for this reason. The five tasks were
presented in a random order to the children with the constraint that the first
task not be the control task.
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Results and Discussion

Initial ¢ tests revealed no difference in the children’s perfor-
mance between the two different one-cause tasks or between the
two different two-cause tasks, so the children’s performance on
those two types of trials was averaged. Table 2 shows the number
of times children chose the 100% (A) and 66% (B) blocks as the
one that “was like the blicket” across conditions.

In the one-cause condition, children chose the 100% A object as
being “like the blicket” 78% of the time, significantly more often
than they chose the 66% B object (22% of the time; binomial test,
p < .005). In contrast, children in the two-cause condition chose
the 100% A object as being “like the blicket” only 47% of the time,
which was not significantly different from the 53% of the time
they chose the 66% B object (binomial test, ns). Recall that in
Experiment 1, children were equally likely to say that the A block
was a blicket and that the B block was a blicket in the two-cause
task in spite of the fact that B was only effective two thirds of the
time. Similarly, in this experiment, in which children had to pick
only one object, they were equally likely to choose the A and B
blocks.

In this modified task, even these 2-year-olds behaved in accor-
dance with the screening-off procedure. In the one-cause task, they
were likely to say that the 100% block was like the blicket and the
66% block was not, but they were equally likely to choose either
block in the two-cause task. Thus, introducing the forced-choice
format seemed to eliminate the yes bias but replicated the basic
effect of Experiment 1.

Experiment 3

The responses in Experiments 1 and 2 clearly went well beyond
the kind of blocking that appears in classical conditioning. Chil-
dren learned a novel fact with no immediate ecological signifi-
cance, and they did so simply by observing three events. More-
over, as in the work of Gopnik and Sobel (2000) and Nazzi and
Gopnik (2000), they also seemed to identify the new object’s
causal power by categorizing it linguistically—saying either that it
was a blicket or that it was like a blicket. As we described earlier,
however, genuine causal judgments should also allow children to
craft appropriate interventions and to combine the new causal
information with prior causal information.

In addition, in the first two experiments, we assumed that
children understood our original instructions about the causal
power of the blocks and were indeed using the word “blicket” to
identify the blocks that made the machine go. However, it was also
possible that children were simply associating the word “blicket”

Table 2

Mean Number of Blocks (Out of 2) That 30-Month-Old Children
Chose as Being “Like the Blicket” in Experiment 2, as a
Function of Task and Contingency

One-cause task Two-cause task

100% 66% 100% 66%

Age n % n % n % n %

30 months 1.56 78 044 22 094 49 1.06 53

with the effect and further associating the block with the effect.
They need not have understood that the blicket actually made the
machine go but could simply have associated the word with the
effect.

In Experiment 3, we investigated whether children would com-
bine screening-off information with prior causal knowledge in
order to craft a new intervention. In the case of physical causality,
and particularly in the case of machines, a likely general substan-
tive principle is that if an event makes a machine go, the cessation
of the event will make the machine stop—this principle applies to
many common cases involving switches, buttons, and so forth.
This is not a necessary principle, of course, but it is a plausible
pragmatic assumption about this type of causal relation. If children
really think that the blickets have the causal power to make the
machine go, they should also infer that removing the blickets is
likely to make the machine stop even if they have never seen this
event. Moreover, they should intervene appropriately to bring
about this effect. On the other hand, if they are merely associating
the word, the object, and the effect, children should not draw this
inference, nor should they be able to craft an appropriate
intervention.

In Experiment 3, we modified the task so that children did not
see that removing the block made the machine stop. One block, B,
was placed on the machine, and nothing happened. The B block
was removed, and then the other block, A, was placed on the
machine, and the machine went on. After a few seconds, the
original B block was replaced on the machine next to the A block,
and the machine continued to stay on for an extended time. We
then simply asked the children, “Can you make it stop?” If children
were drawing causal conclusions from patterns of dependent prob-
ability, and combining those conclusions with their substantive
causal knowledge, they should remove the A block, rather than the
B block.

Method

Participants. Twelve 3-year-olds, ranging in age from 3 years 2
months to 3 years 9 months (mean age = 3 years 6 months) and 12
four-year-olds, ranging in age from 4 years 3 months to 4 years 11 months
(mean age = 4 years 6 months) were recruited from two urban-area
preschools. Approximately equal numbers of boys and girls participated.
Although most children were from White, middle-class backgrounds, a
range of ethnicities resembling the diversity of the population was
represented.

Materials. The blicket detector and a set of five wooden blocks were
used in this experiment. No two blocks were identical.

Procedure.  All children were tested by a female experimenter with
whom they were familiar. Children were brought into a quiet hallway in
their school and sat facing the experimenter at a table. The blicket detector
was on the table. Children were introduced to the blicket detector by being
told, “Some blocks make this machine go, and some blocks don’t.”
Children were asked if they could help “figure out which blocks make the
machine go.” However, to ensure that the child had no opportunity to see
that removing the blocks made the machine stop, we did not actually
demonstrate the blicket detector for the child, and the word “blicket” was
not used.

One-cause task. During the one-cause task, the children saw two
blocks, A and B. The experimenter placed Block B on the blicket detector,
and nothing happened. Then she removed Block B. Block A was then
placed on the blicket detector, and it activated the machine. With Block A
still on the detector, the experimenter placed Block B back on the machine,
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with its placement to the left or the right of Block A counterbalanced. The
machine remained on. Then the experimenter asked the child, “Can you
make it stop?”’

If children were using screening-off assumptions to draw causal con-
clusions and combining those assumptions with their prior knowledge of
physical causality, they should remove Block A rather than Block B. As in
the earlier one-cause task, children saw that A was associated with the
effect independent of B but that B was only associated with the effect
dependent on A. That should lead them to conclude that A, but not B,
caused the effect and that they should remove A, but not B, to stop the
effect. )

Two-cause task. Children were also given a similar two-cause task. In
this task, the experimenter placed Block B on the blicket detector, and the
machine activated. Then she removed Block B and placed Block A on the
detector. Again the machine activated. With Block A still on the detector,
the experimenter placed Block B back on the machine, with its placement
to the left or the right of Block A counterbalanced, just as in the one-cause
task. Then the experimenter asked the child, “Can you make it stop?”’

This time, if children understood the causal properties of the blocks and
everyday principles of physical causality, they should have removed both
Blocks A and B from the detector. In this case, children saw that A and B
were both independently associated with the effect. Children should con-
clude that both A and B cause the effect and that both blocks will have to
be removed to stop the effect. Note also that although in this case the
children see that removing Block B will make the detector stop, this is not
actually the correct response. Children have to remove both blocks, a
response they have never seen. In addition, as in Experiment 1, including
the one-cause and two-cause tasks helps eliminate the possibility of simple
strategies or biases such as choosing the block that was placed on the
detector first.

Control task.  Finally, children were given an additional control task to
ensure that they were on task and that they had indeed made the prior
pragmatic assumption that taking the block off would make the machine
stop. In this task, a single block was placed on the detector, and the
machine turned on. Children were asked, “Can you make it stop?”

Children were always given the one-cause task first. The other two tasks
were then presented in random order. We did this to ensure that the child’s
insight into how to stop the machine in this task was not derived from prior
associations. At the time of the one-cause task, children had never actually
seen that taking a block off made the machine stop, just as in the two-cause
task they had never actually seen that taking both blocks off made the
machine stop. This also meant that children could not simply imitate the
experimenter’s action but had to craft a genuinely new intervention.

Results and Discussion

Initial analysis of performance on both the one-cause and two-
cause tasks revealed no difference between the 3-year-olds and the
4-year-olds (Fisher’s exact test, ns). Therefore the children’s re-
sponses were analyzed as a single group. All of the children
successfully completed the control task, indicating that they did
indeed know the general pragmatic rule that if a block made the
machine go, removing it would make the machine stop. Children
in the other two tasks made four types of responses. They either
initially took off the A block, initially took off the B block, took
off both blocks together, or made no response. Table 3 shows the
distribution of responses from the 24 children on the one-cause and
two-cause tasks.

Children were more likely to reach for Block A in the one-cause
condition than in the two-cause condition, McNemar’s X2 (1,N=
24) = 11.53, p < .001. Children were also more likely to reach for
both blocks in the two-cause condition than in the one-cause
condition, McNemar’s X2 (1, N =24) = 7.11, p < .01.

Table 3
Number of Children per Type of Response on One-Cause and
Two-Cause Tasks in Experiment 3

One-cause task Two-cause task

Response n % n o
Remove Block A 18 75 3 13
Remove Block B 3 13 7 29
Remove both A and B 3 13 12 50
No response 0 0 2 8

Even when children in the two-cause condition picked only one
block, their initial choice was random. In the two-cause condition,
there were no significant differences between the performances of
children initially choosing the A and B blocks (13% vs. 29%;
binomial test, ns). In the one-cause condition, in contrast, the
children were significantly more likely to pick Block A, the causal
block, than Block B, the noncausal block (75% vs. 13%; binomial
test, p < .001).

It might be objected that children in the two-cause condition
were as likely to remove one object (or the other) initially as they
were to remove both objects simultaneously. When children re-
moved both objects in the two-cause task, they clearly demon-
strated that they thought both blocks were causes. Note, however,
that some children may have intended to remove the blocks one
after another. This would also be an appropriate causal response.
As a matter of fact, all of the children in the two-cause condition
who initially removed one block did rapidly remove the other
block after their initial choice, which might indicate that they did
think both objects were causes. Children in the one-cause condi-
tion did not do this. However, there is a problem with this inter-
pretation of the data. In the two-cause task, the machine continued
to remain on after the first block was removed, whereas it did not
in the one-cause task. This means that we cannot be sure whether
this second serial response did indeed reflect a decision to remove
both blocks serially in the first place or was simply a reaction to
the fact that the initial response was ineffective. Thus, these serial
responses do not indicate either that the children thought that both
blocks were causes or that they thought that only one block was the
cause. Instead, these responses could be consistent with either a
two-cause or a one-cause interpretation. However, the single-block
responses and the simultaneous responses do discriminate between
these two cases, and they were distributed in a way that accords
with the screening-off hypothesis.

To summarize, in the one-cause condition, both the 3- and
4-year-olds screened off and selectively removed the causal block.
In the two-cause condition, the most frequent response was to
remove both blocks simultaneously. Moreover, in the one-cause
condition, children preferentially chose the causal over the non-
causal block, whereas in the two-cause condition, the children who
did choose only one block initially chose at random. These results
are consistent with the hypothesis that preschool children reason in
a genuinely causal way and use formal principles to reach causal
conclusions.

General Discussion

The results of these experiments suggest that children as young
as 2 years of age will indeed draw causal conclusions from patterns
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of dependent and independent probability. Several things are sig-
nificant about these results. Children had never seen or heard about
this causal relation before the experiment itself, yet they swiftly
learned about it after only a few exposures. In addition, there were
no obvious perceptual clues in the blocks themselves that indicated
which blocks would set off the machine. Children imputed an
underlying nonobvious, causal power to the blocks. Moreover, the
children initially simply observed the patterns of contingency
between the blocks and the machine, and yet they generalized from
that information in two ways. First, in Experiments 1 and 2, they
used the information appropriately to say which blocks were
blickets or were similar to a blicket. Second, in Experiment 3, they
combined that information with prior causal information to appro-
priately predict the effects of a new action and to produce that
action themselves. Thus it appears that children used the
screening-off information to make a genuinely causal judgment.

Earlier we mentioned that children could use both more top-
down substantive causal learning mechanisms, and more data-
driven formal learning mechanisms. Although we have focused on
data-driven formal learning in this article, we do not wish to imply
that these procedures are more important than the more substantive
principles that also underlie causal inference. In fact, in Experi-
ment 3, we showed that children combined both kinds of infor-
mation in their causal reasoning. We think that both types of causal
reasoning are complementary and interact in useful ways in de-
velopment. Innate substantive causal schemes—innate theories, in
effect—may be important in initially telling children how to divide
the world up into candidate causal variables and relations and in
pointing out which variables to consider (see Gopnik & Meltzoff,
1997). However, data-driven formal causal learning mechanisms
provide children with a powerful method of learning about new
causal relations and modifying the causal schemes with which they
start.

These formal causal learning mechanisms are an interesting
kind of halfway point between domain-general and domain-
specific mechanisms of cognitive development. Unlike the usual
domain-specific mechanisms, causal inference procedures can be
applied to input from many domains. Causal learning need not be
limited to information about people or plants or objects. Causal
learning need not be restricted to postulating particular types of
causes for particular effects. We might explain a human action in
terms of some combination or interaction among physical, psy-
chological, and biological causes. Both children and scientists may
postulate genuinely new types of causal entities and mechanisms
to explain the data. For example, the theory-of-mind literature
suggests that children postulate a new type of causal entity, a
mental representation, to explain certain psychological phenomena
(Gopnik & Wellman, 1994; Perner, 1991).

However, causal learning of the kind we are describing is more
constrained than traditional domain-general learning mechanisms,
such as logical inference on the one hand or associations or
connections on the other. Causal inferences are not themselves
necessarily deductive; they depend on contingent assumptions
about how evidence and causal structure are related. Causal infer-
ences also go beyond mere associations. The process of causal
learning we have described is quite different from the entirely
domain-general process of simply capturing or matching regular-
ities, even high-level regularities, in the input, as classic associa-

tionist accounts or contemporary connectionist and dynamic sys-
tems accounts typically do.

In fact, there are many domains of cognitive development—
such as the acquisition of syntactic or phonological knowledge,
mathematical knowledge, or musical knowledge—that do not
seem to involve the recovery of causal structure. Causal learning
mechanisms might not apply to these areas. Interestingly, these are
also not domains where “the theory theory” (Gopnik & Wellman,
1994) seems to be naturally applicable.

Another important point is that we think these learning proce-
dures may well be unconscious; 3-year-olds and even adults would
be hard-pressed to formulate explicitly the assumptions they use in
causal inference. Indeed, we think it is very unlikely that children
could consciously predict what sorts of evidence are necessary to
draw causal conclusions, and children might, in fact, make errors
if they were asked to do so, as they did in Kuhn’s (1989) “control
of variables” studies. Instead, it appears that children simply do
draw the right causal conclusions when they are presented with
appropriate patterns of evidence, without any conscious access to
the mechanisms that allow them to do this.

There are also several important limitations of this study. First,
it did not explore many important facets of children’s uses of
dependencies in data to make causal inferences, such as the sen-
sitivity of their judgments to varying strengths of probabilistic
dependency or to sample size. Interestingly, the children in this
study appeared willing to accept that an object could produce an
effect probabilistically—they said that the block that made the
detector light up two out of three times was indeed a blicket.
However, we do not know how children use this probabilistic
information in their judgments.

Second, it was possible that the children paid attention only to
the blocks that were placed on the detector by themselves and
simply ignored the cases in which both blocks were placed on the
detector. This procedure would lead to results similar to those in
the present study. However, another blicket study showed that this
is not the case (Sobel, 2001). In that study, we presented the
children with the following sequence of events. The experimenter
placed two blocks on the detector together, and the detector lit up.
Then the experimenter placed the B block on the detector by itself,
and the detector did not light up. Then we asked the children
whether each block was a blicket. Three- and 4-year-olds in this
experiment reported that the A block was a blicket and that the B
block was not. This was in spite of the fact that they had only seen
the A block in conjunction with the B block.

More fundamentally, there are at least two different general
formal models of how screening-off relations can be used to make
causal inferences. First, there is the normative account of the
relationship between causality and probabilistic dependence that is
given in the literature on causal Bayes nets (Pearl, 1988, 2000;
Spirtes et al., 2000), which we have already described. Cheng’s
causal power model is also a special case of a causal Bayes-net
model (Cheng, 1997, 2000). However, there are also models of
causal inference in adults—in particular, Shanks’s (1985) delta
rule model—that are more similar formally to the Rescorla—
Wagner learning model (Rescorla & Wagner, 1972) and to the
learning procedures used in connectionist systems (Glymour, in
press; Shanks, 1985). These latter models, unlike the Bayes-net
models, do not produce normatively accurate causal judgments.
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However, they might, in fact, be the models implicit in human
causal judgment.

In some cases, these two models make different sets of predic-
tions, and some preliminary work suggests that adult causal judg-
ments accord better with the Bayes-net models (Glymour, in press;
Tenenbaum, 1999). However, in simple cases like the ones in the
current experiments, they yield similar predictions. Our experi-
ments do not test which of these accounts better explains the causal
judgments of young children.

Similarly, within the causal Bayes-net framework itself, there
are many alternative detailed learning algorithms that allow for
inferences from screening-off data to causal relations and that
might explain our experimental results. Some of these procedures
build causal hypotheses from identified patterns of probabilistic
independence and dependence. Other methods rely more on
Bayesian inference: They assign a prior probability to causal
relations and, using various possible heuristics, compute an ap-
proximate posterior probability given the data (see, e.g., Glymour
& Cooper, 1999). Again, the current experiments do not discrim-
inate among these possibilities.

What we have shown is that even very young children can and
do infer new causal relations from information about dependent
and independent probability. Developmentalists have already dem-
onstrated that very young children learn a great deal about the
causal structure of the world and do so with remarkable accuracy
and speed. Computationalists have shown that learning mecha-
nisms can derive normatively accurate causal inferences from
information about dependent and independent probability. Such
learning mechanisms might well play an important role in the
acquisition of causal knowledge. Future investigations should help
us to uncover the nature of these mechanisms in more detail.
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The Publications and Communications Board of the American Psychological As-
sociation announces the appointment of five new editors for 6-year terms beginning in

As of January 1, 2002, manuscripts should be directed as follows:

e For the Journal of Applied Psychology, submit manuscripts to Sheldon Zedeck,
PhD, Department of Psychology, University of California, Berkeley, CA 94720-

e For the Journal of Educational Psychology, submit manuscripts to Karen R.
Harris, EdD, Department of Special Education, Benjamin Building, Univer-
sity of Maryland, College Park, MD 20742.

e For the Journal of Consulting and Clinical Psychology, submit manuscripts to
Lizette Peterson, PhD, Department of Psychological Sciences, 210 McAlester
Hall, University of Missouri-—Columbia, Columbia, MO 65211.

e For the Journal of Personality and Social Psychology: Interpersonal Relations
and Group Processes, submit manuscripts to John F. Dovidio, PhD, Depart-
ment of Psychology, Colgate University, Hamilton, NY 13346.

e For Psychological Bulletin, submit manuscripts to Harris M. Cooper, PhD,
Department of Psychological Sciences, 210 McAlester Hall, University of
Missouri—Columbia, Columbia, MO 65211.

Manuscript submission patterns make the precise date of completion of the 2002
volumes uncertain. Current editors, Kevin R. Murphy, PhD, Michael Pressley, PhD,
Philip C. Kendall, PhD, Chester A. Insko, PhD, and Nancy Eisenberg, PhD, respec-
tively, will receive and consider manuscripts through December 31, 2001. Should 2002
volumes be complcfed before that date, manuscripts will be redirected to the new editors




