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The ability tomake inductive inferences from sparse data is a critical
aspect of human learning. However, the properties observed in
a sampleof evidencedependnotonlyon the trueextensionof those
properties but also on the process by which evidence is sampled.
Because neither the property extension nor the sampling process is
directly observable, the learner’s ability to make accurate general-
izations depends on what is known or can be inferred about both
variables. In particular, different inferences are licensed if samples
are drawn randomly from the whole population (weak sampling)
than if they are drawn only from the property’s extension (strong
sampling). Given a few positive examples of a concept, only strong
sampling supports flexible inferences about how far to generalize
as a function of the size and composition of the sample. Here we
present a Bayesian model of the joint dependence between ob-
served evidence, the sampling process, and the property extension
and test the model behaviorally with human infants (mean age: 15
months). Across five experiments, we show that in the absence of
behavioral cues to the sampling process, infants make inferences
consistent with the use of strong sampling; given explicit cues to
weak or strong sampling, they constrain their inferences accord-
ingly. Finally, consistentwith quantitative predictions of themodel,
we provide suggestive evidence that infants’ inferences are graded
with respect to the strength of the evidence they observe.
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Human learners can draw rich, abstract inferences from sparse
data (1–6). One of the enduring mysteries of cognitive science

is why such inferences should be so accurate. The simplest answer is
that induction canbeaccurate as longas the sample is representative
of the population. But how do learners know whether a sample is
representative? If learners already knew the properties of the
population andcould see that theywere reflected in the sample, they
couldbeconfident that the samplewas representative.However, it is
precisely this information (i.e., theproperties of thepopulation) that
is in question. Induction is a puzzle because it can hinge on the so-
lution to such chicken-and-egg problems. Inferences about the ex-
tension of object properties depend on the relationship between the
sample and the population, but knowing that may depend on
knowing the extension of the object properties.
The problem of how to infer the extension of object properties

from small samples of data bedevils much of scientific inquiry.
Rock samples fromMars have a high concentration of silica. Is this
true for all Martian rocks or just the (dusty) rocks on the surface?
Evergreen needles in a forest lie flat along the branch. Is this true
for all needles or only those from low-hanging branches? Scientists
could use the appearance of the sample (rocky, needle-like) and/or
known category labels (“rocks”, “evergreen needles”) to general-
ize properties within but not across kinds (to other rocks and ev-
ergreen needles but not from rocks to evergreen needles). Indeed,
even young children can use such cues to constrain their inferences
(e.g., children infer that entities that share observable properties
and/or category labels with a sample are likely to share other
properties as well) (7, 8). However, these cues may not suffice.
Whether all Martian rocks have silica or all needles lie flat might
depend also on the sampling process.

In scientific inquiry, we can usually either control the sampling
process or recognize its biases. If, for instance, we know that the
objects’ properties are not independent of the sampling process
(because rocks on the surface are more likely to be dusty and to be
sampled; because trees low in the canopy have flat needles to
maximize sun exposure), we can use this to restrict our general-
izations (in both instances, to thepopulation onornear the ground).
However, the problem becomes more complicated when the

nature of the sampling process is unknown. This is often the case in
social contexts.When aperson chooses a sample, she could sample
randomly from thewhole population or selectively fromany subset
of the population, for any number of reasons: because of her
preferences, because some objects are easier to reach, because she
was told what to do, etc. If the person’s goals are not made explicit
by linguistic or pragmatic cues, the sampling process may not be
obvious. Suppose, for instance, a child sees her mother pull a few
blue toys from a box of blue and yellow toys. The blue toys squeak.
Do all of the toys squeak or just the blue ones? How, short of
testing all of the toys, could the child tell?
As inmany problems of induction, the problem of generalization

from a sample can be solved either by assumingmore constraints on
the learner, allowing for relatively simple inferences, or by assuming
fewer constraints and more sophisticated inferential abilities. Thus
one possibility is that there are early constraints on what infants
assume about agents’ sampling processes. Infants might, for in-
stance, assume weak sampling (i.e., agents choose items at random
from the population, independent of the properties they have) or
strong sampling (agents sample items selectively, depending on the
properties they have) (9). Alternatively, infants might not have
expectations about sampling processes; rather, they might simulta-
neously infer both the sampling process and the extension of object
properties from data. That is, infants might make joint inferences
about the subset of the population that was sampled and the subset
to which the property extends, given both the possibility that the
subset sampled might be independent of the property’s extension
and the possibility that it might be coextensive with it.
Whether assumed or inferred, the key question is whether infants

consider the sampling process and use it to make accurate gen-
eralizations.As thenames indicate, weak sampling is a less powerful
constraint on induction than strong sampling (9). If the learner
thinks the evidence was sampled from the population as a whole,
then both positive and negative evidence (these toys squeak; those
toys do not) is needed to constrain inferences to subpopulations
(only this kind of toy squeaks). By contrast, under the strong
samplingassumption, evena fewsamplesofpositive evidence (these
toys squeak) can constrain inductive generalizations to sub-
populations or kinds (only this kind of toy squeaks). Here we
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propose a formal model that captures the relationship between the
sampling process, the observed data, and the extension of object
properties. We present evidence suggesting that infants can flexibly
constrain their predictions about the extension of an object property
given the assumed, or inferred, sampling process. In particular, we
show that in the absence of behavioral cues to the sampling process,
infants make inferences consistent with the use of strong sampling.
Critically, this is not because infants cannot consider other alter-
natives; given explicit behavioral cues to weak or strong sampling,
infants constrain their generalizations accordingly.
Our studies build on previous work suggesting that infants may

be sensitive to each component of the problem in isolation. That is,
infants are capable both of inductive generalization and of sensi-
tivity to sampling processes. Young children project properties
across entities that share labels and/or perceptual features (7, 8),
and infants as young as 9 months can generalize otherwise hidden
properties of objects (e.g., rattling, squeaking) to identical-looking
objects after a single exposure (10). Infants in their first year can
form expectations about the properties of a sample from a pop-
ulation and about a population from a sample (11), and these
expectations are sensitive to how samples are generated: 11-month
olds expect randomly generated samples to be representative of
the population from which they are drawn, but suspend this in-
ference if the sample is clearly generated selectively (e.g., by an
experimenter who expresses a preference for particular objects)
(12). Older children can make analogous inferences in reverse.
They assume that an agent who pulls a nonrepresentative sample
from a population must have a preference for members of that
sample but they do not make this inference if the agent pulls
a representative sample (13). Finally, the scope of preschoolers’
generalizations about word meanings has been shown to depend
on both the sample of evidence provided and the nature of the
sampling process, inways predicted by rational Bayesianmodels of
generalization (14, 15). Given three labeled examples of a novel
object category, preschoolers restricted their generalizations
about the label to the tightest category containing the examples,
but only when given explicit cues that the examples were generated
by strong sampling rather than weak sampling.
Collectively, these results suggest that infants can project proper-

ties fromsamples topopulations, recognizewhensamplesareandare
not representative of target populations, and recognize that different
sampling processes generate different samples. However, in most
previous work the sampling process was specified by explicit social/
pragmatic cues (e.g., choosing blindfolded vs. choosing with open
eyesand smilingat the chosen items).Nopreviousworkhas lookedat
what inferences infants draw when the sampling process is not ex-
plicitly cued. Moreover, no previous work has looked at whether
infants’ generalization of object properties depends on the sampling
process.What happenswhen the probability of drawing a sample and
the determination of objects’ properties mutually constrain one an-
other?Do infants vary their inferences dependingon the relationship
between the sample and the population? And can they modulate
their generalizations in proportion to howmuch evidence they have?
Both our model and our experiment follow from the toy box ex-

ample we outlined above. In the current study, we vary the ratio of
blue to yellow balls in a box and the number of blue balls the ex-
perimenter pulls from the box. The experimenter squeezes each blue
ball in the sample so it squeaks. In all conditions, the question is
whether, consistent with different compositions of the sample rela-
tive to the population, infants will generalize the squeaking property
to the yellow balls. Because the infancy research suggests that babies
have abilities presumably prerequisite to such inferences (property
projectionandsensitivity to samplingprocesses) by theendof thefirst
year, we look to the beginning of the second year (mean: 15months)
for children’s ability to use information about the sample and pop-
ulation to constrain their inferences about the property extension.

Behavioral Study and Comparison with Model Predictions
Our predictions are informed by a Bayesian inference model that
formalizes the claim that inductive inferences about object proper-
ties depend on both the sampling process (S) and the true extension
of the object properties (T). This joint dependence can be described
in terms of a simple graphical model (Fig. 1). For simplicity, we
consider just three possible property extensions (t1, the property
applies only to blue balls; t2, it applies only to yellow balls; and t3, it
applies to all balls) and two possible sampling processes (s1, selec-
tively sampling from just the squeaking set of balls, or strong sam-
pling; s2, randomly sampling from the whole box, or weak
sampling).* The learner observes dataD= n examples of blue balls
that squeak, drawn from a box that appears to contain a fraction β of
blue balls and1−β yellow balls. The learner’s goal is to predictY, the
proposition that yellow balls squeak.Note thatY depends directly on
T, not S or D; given that we know the set of balls that squeak, the
observed data or the process by which the data were sampled are
irrelevant to predicting whether the yellow balls squeak. However,
inferences about T from D must take into account the different
possible values of S. (See SI Text for a formal description.) Because
the learner’s data are inconsistent with the hypothesis that only yel-
low balls squeak (t2), only two hypotheses for T are relevant to Y and
they make opposite predictions: t1 predicts that yellow balls do not
squeak; t3 predicts that they do. The output of our model is a like-
lihood ratio

L ¼ PðDjt3Þ
PðDjt1Þ

¼ Pðnjt3; βÞ
Pðnjt1; βÞ

capturing the strength of evidence (16) for t3 over t1 and thus for
whether yellow balls squeak,while takingS into account. The higher
L is, themore likely that yellow balls squeak. In our experiments, we
assume that children’s exploratory behavior (i.e., how much they
squeeze the yellow ball, expecting a squeak) will be monotonically
related to L.
As explained in SI Text, the likelihood ratio can be expressed as

L ¼ βn

αþ βnð1− αÞ;

where the parameter α describes the learner’s prior probability
(degree of belief independent of the data D) for selective (or
strong) sampling (S = s1). By setting this parameter appropri-
ately, the model can express different possibilities for how infants
might take into account sampling in their inductive general-
izations. Setting α to either 0 or 1 encodes a definite assumption
about the sampling process; setting α = 0.5 means that the
learner has no initial bias for either sampling process and must
make a joint inference about sampling and the property’s ex-
tension from the observed data.
In our behavioral experiments (see Fig. 2), infants (mean, 15

months, 15 days; range, 13–18 months) saw an experimenter draw
blue balls from a box and were then given the inert yellow ball. †In
Exps. 1–3, we varied the number of balls drawn from the box (n)
and the ratio of blue to yellow balls in the box (β) to provide
a sample of balls that was either probable or not probable given the
population. Because there is no evidence that infants have initial
expectations about the sampling process, we present our data with

*It is possible to generate more complex hypotheses for both the sampling process (Dis-
cussion) and the property extension (e.g., the three blue balls in the sample plus one
other ball might squeak, the three balls in the sample plus two other balls might squeak,
etc.). Here we model the simplest set of hypotheses needed to explain the range of
evidence presented to infants across all five experiments.

†The model mirrors the task design in distinguishing the sampling phase from the test
phase. Because the yellow ball was treated differently from the blue ball(s) (i.e., given
directly to the children and not manipulated by the experimenter), we do not treat the
yellow ball as part of the sample in the model.
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respect to the joint inference account (α = 0.5). We then discuss
the relationship of the data to themodel predictions under definite
assumptions of either random (weak) or selective (strong) sam-
pling (α = 0 or 1, respectively). In Exps. 4 and 5, we provide be-
havioral cues suggesting that the balls are sampled randomly (Exp.
4) or selectively (Exp. 5) to look at how infants’ inferences are
affected by explicit evidence about the sampling processes. Fig. 3
shows the different strengths of evidence (L) predicted by our
Bayesian analysis in these different experimental conditions.
In Exp. 1, 15 children were randomly assigned to a Blue3balls

condition and 15 to a Yellow3balls condition. (The color refers to
themajority of objects in the box and the number to the number of
blue balls drawn.) In both conditions, children saw a box with
a transparent front. In theBlue3balls condition, 12 blue balls and 4
yellow balls were visible (β= 0.75); in the Yellow3balls condition,
12 yellow and 4 blue balls were visible (β = 0.25). In both con-
ditions, the experimenter took three blue balls from the box, one at
a time. Each time she said “Look!”, squeezed the ball so that it
squeaked, and then set it on the table. Her actions were identical
across conditions, so there were no cues to indicate whether she
was sampling from a specific subset of balls or from all of the balls.
In both conditions, the experimenter then removed an (inert)
yellow ball from the box and gave it to the child. The child was

allowed to play with the yellow ball for 30 sec. We coded the
number of children who squeezed the yellow ball and the number
of times each child squeezed.
Under the Bayesian framework, children might consider four

joint hypotheses about the sampling process and property exten-
sion: H1, sampling = squeaking set (s1), property = blue (t1); H2,
sampling = whole box (s2), property = blue (t1); H3, sampling =
squeaking set (s1), property = all (t3); and H4, sampling = whole
box (s2), property = all (t3).
In both conditions, three blue balls are removed from the box

(n = 3). In the Blue3balls condition, the data (given that three-
quarters of the balls in the Blue box are blue; β = 0.75) fail to
distinguish the possibility that the experimenter is sampling from
only the squeaky balls (s1) from the possibility that she is ran-
domly sampling from the whole box (s2). Because the inference
about the sampling process is tightly coupled to the inference
about the property extension, the data also fail to distinguish the
inference that only blue balls squeak (t1) from the inference that
all balls squeak (t3). Thus all four hypotheses are consistent with
the evidence and the status of the yellow toy is unknown. Be-
cause the perceptual similarity between the objects supports the
property generalization (10), and the statistical data do not
weigh against it, we expected children to squeeze the yellow ball.
By contrast, in theYellow3balls condition, threeblueballs (n=3)

are pulled from a box containing only one-quarter blue balls (β =
0.25). The sample is unlikely if the experimenter were randomly
sampling from the whole box; it is more probable as a sample from
just the squeaky balls. Again, this inference is coupled to the in-
ference about theproperty extension.Given that theballsweremost
likely sampled from the squeaky balls, the evidence that three blue
balls squeak is more likely under the hypothesis that only the blue
balls squeak than under the hypothesis that all balls squeak. Thus
thedata support inferences s1 and t1. The joint hypothesisH1makes
the observed sequence of data more probable than any of the other
alternatives. In this condition, children should assume that the yel-
low ball does not squeak and thus should be unlikely to squeeze it.
Assuming that two samplinghypotheses (s1 and s2) are equal a priori
(α= 0.5), the likelihood ratio (L; SI Text) is 0.59 for the Blue3balls
condition and 0.03 for the Yellow3balls condition. (See Fig. 3 for
model predictions and results throughout.)
Theexperimental results confirmed themodel predictions.Fewer

children squeezed theball in theYellow3balls than in theBlue3balls
condition [33%vs. 80%; χ2 (1,n=30)=6.65,P< 0.01] and children
squeezed the yellow ball less often [0.87 vs. 2.53; t(28) = 2.45, P <
0.05]. These results suggest that infants constrained their general-
ization of the squeaking property to the blue balls in the Yellow3-
balls but not the Blue3balls condition.
Although the results of Exp. 1 are consistent with our formal

analysis, it is possible that children simply assumed that properties
true of a member of the majority kind could be generalized to the
minority kind, but not vice versa. That is, childrenmight generalize
from the blue balls to the yellow ball whenmost balls were blue (in
the Blue3balls condition) but not when most balls were yellow (in
the Yellow3balls condition).
Experiment 2 addressed this alternative explanation. We rep-

licated the Yellow3balls condition of Exp. 1 and compared it with
a Yellow1ball condition, in which the experimenter drew just one
blue ball out of the mostly yellow box. Randomly drawing a single
blue ball from a mostly yellow box is not particularly improbable
and does not discriminate between s1 and s2 or t1 and t3. Although
the only difference between the two conditions is the number of
balls (n) drawn from the box, we expected that children should
restrict their generalization of the squeaking property to the blue
ball significantly more often in the Yellow3balls than in the
Yellow1ball condition.
Of course, when children are shown three blue balls squeaking

rather than one, they also seemore actions on the blue ball and are
exposed to the blue balls for a longer time.Mere added experienceFig. 2. Schematic of design in Exps. 1–5. See text for details.

Fig. 1. Graphical model of the relationship between the sample, the sam-
pling process, and the true extension of the object properties. Whether the
yellow balls squeak depends only on the extension of the target property.
However, the property extension can be inferred only from the observable
data (the ratio β of blue/yellow balls in the box and the n in the sample),
which depend also on the sampling process. Thus to decide whether the
yellow ball will squeak, children must either assume a particular sampling
process or make a joint inference about both the sampling process and
property extension.
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with the blue balls (rather than the number of blue balls in the
sample) could make children less likely to generalize the property
to the yellow ball. To address this possibility, we ran a Yellow1ball
Extended condition in which children again saw a single blue ball
drawn from the mostly yellow box. This time, however, the ex-
perimenter squeezed the blue ball six times, matching the number
of actions and time of exposure to the Yellow3balls condition. If
children restrict their generalization to the yellow ball on the basis
of the length of exposure and number of actions performed on the
blue ball, then children in the Yellow1Ball Extended condition
should perform like children in the Yellow3balls condition; if,
instead, children are sensitive to the relationship between the
sample and the population, children’s performance should mirror
that of children in the Yellow1ball condition.
With respect to themodel, βwas held constant (at 0.25) between

the conditions whereas n was either 3 or 1. Assuming α= 0.5 as in
Exp. 1, the likelihood ratio (L) is 0.40 for the Yellow1ball con-
ditions and 0.03 for Yellow3balls replication. Again, the results
were consistent with the model predictions. Fewer children
squeezed the ball in the Yellow3balls than in the Yellow1ball
condition [38% vs. 82%; χ2 (1, n = 33) = 6.95, P < 0.01] and
children squeezed less often [0.75 vs. 2.12; t(31) = 2.35, P < 0.05].
The results of theYellow3balls condition of Exp. 2 replicated the

Yellow3balls condition of Exp. 1 [children squeezing, 38% vs. 33%,
P = not significant (NS); mean squeezes, 0.75 vs. 0.87, P = NS]
whereas the results of the Yellow1ball condition of Exp. 2 mirrored
thoseof theBlue3balls condition ofExp. 1 (children squeezing, 82%
vs. 80%, P = NS; mean squeezes, 2.12 vs. 2.53, P = NS).
These results were not due simply to children’s differential ex-

posure to blue balls in theYellow3balls andYellow1ball conditions.
Children’s performance in theYellow1ball Extended condition was
indistinguishable from that of children in the Yellow1ball condition
(children squeezing, 82% vs. 82%, P=NS; mean squeezes, 2.41 vs.
2.12, P = NS) and significantly different from children’s perfor-
mance in the Yellow3balls condition. Fewer children squeezed the
ball in theYellow3balls than in theYellow1ball Extended condition
[38%vs. 82%; χ2 (1,n=33)=6.95,P< 0.01] and children squeezed
less often [0.75 vs. 2.41 ; t(31) = 2.12, P < 0.05].
These results rule out the alternative explanations discussed

above. Although blue balls were the minority objects in both con-

ditions of Exp. 2, children generalized the property in the Yel-
low1ball condition but not in theYellow3balls condition.Moreover,
although onemight assume that themore often infants see an adult
squeezing a ball, the more likely they should be to squeeze it
themselves, we found the reverse. Infants were more likely to
squeeze the yellow ball in the Yellow1ball condition (when the ex-
perimenter squeezed only one ball) than in the Yellow3balls con-
dition (when she squeezed three). Whereas this might suggest the
other possibility—that the more often infants see an action on
a single object kind, the more likely they are to restrict their actions
to this kind—this was also ruled out. Infants in the Yellow1ball
Extended condition saw the single blue ball squeezed repeatedly but
readily generalized theproperty to the yellowball. That is, children’s
tendency to squeeze was unrelated to the number of times they saw
the target action but was well predicted by our model in which
generalization from the sample depends jointly on the sampling
process and the property extension.
Experiment 3 tested the prediction that children’s inferences

should be gradedwith respect to the data; that is, children should be
progressively less likely to squeeze the yellow ball as the number of
balls drawn from the yellow box increases. For instance, setting α=
0.5 (s1 and s2 are equally likely a priori) and β=0.25 (one-quarter of
balls in the box are blue), the likelihood ratios (L) are 0.40, 0.12, and
0.03 for n = 1, n = 2, and n = 3, respectively. The significant dif-
ferences between children’s performance in the two Yellow1ball
conditions (Exp. 2) and theYellow3balls conditions (Exps. 1 and 2)
provide data for cases in which n=1 and n=3. InExp. 3 we ran the
intermediate case, a Yellow2balls condition, in which the experi-
menter sampled two blue balls from the box containing one-quarter
blue balls. We predicted that children’s tendency to squeeze the
yellow ball in this condition would be intermediate between the
results of two Yellow1ball and Yellow3balls conditions. The pre-
diction of intermediate responding means that although the results
of the Yellow2balls condition might not differ significantly from
either the Yellow1ball or the Yellow3balls conditions, the model
estimates for the five conditions should predict the pattern of
results. This is whatwe found.Numerically,more children squeezed
in the Yellow2balls condition of Exp. 3 than in either Yellow3balls
condition (47% vs. 33%, Exp. 1; 47% vs. 38%, Exp. 2, P=NS) and
children squeezed the yellow ball more often (1.35 vs. 0.87, Exp. 1;

A B C

D E

Fig. 3. Model predictions (A–C) and results for Exps. 1–5 (D and E). (A) Model predictions with α set to 0.5 (joint inference); (B) α set to 1 (assuming strong
sampling); (C) α set to 0 (assuming weak sampling). In D and E, asterisks indicate significance in planned comparisons based on model predictions (*, P < 0.05;
**, P < 0.01).
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1.35 vs. 0.75, Exp. 2; P = NS). Also, fewer children squeezed the
yellow ball in either Yellow2balls condition of Exp. 2 [47% vs. 82%
(both conditions); χ2 (1, n = 34) = 4.64, P < 0.05], and children
squeezed numerically less often [1.35 vs. 2.12 (Yellow1ball), 1.35 vs.
2.41 (Yellow1ball Extended), P = NS]. Critically, this pattern of
results was well predicted by the model (Pearson’s r = 0.98, P <
0.005). Given that this correlation considers only five data points,
the results should be interpreted with caution. However, they pro-
vide suggestive evidence that children’s inferences vary in a graded
manner with the size of the sample.
In modeling the results so far, we have assumed that the two

sampling hypotheses (s1 and s2) were assigned equal probability
a priori (α = 0.5). As noted, infants might instead have initial
expectations that agents engage in either weak (α = 0) or strong
sampling (α=1); we address those possibilities in the discussion to
follow. In Exps. 4 and 5, however, we consider the case when
children are given overt behavioral cues indicating that the sam-
pling process is either random or selective.
In Exp. 4, the experimenter drew three blue balls from the box

with one-quarter blue balls. However, instead of reaching in, she
shook the boxupsidedown and let three blueballs fall out. Thus, the
evidence [number of balls (n) and proportion of blue balls (β)] was
the same as in theYellow3balls condition ofExps. 1 and 2 but in this
case the experimenter’s action specified that, despite the improba-
bility of the sample, shewas sampling from thewhole box. Formally,
a direct cue to random sampling sets the parameter α to 0 and raises
L to 1.00, much higher than the L= 0.03 of the Yellow3balls con-
dition. Thus we predicted that children in Exp. 4 should generalize
the squeaking property to the yellow ball more than children in
Yellow3balls conditions inExps. 1 and2.The resultswereconsistent
with this prediction.More children squeezed the ball in Exp. 4 than
in theYellow3balls conditions [76%vs. 33%,Exp. 1;χ2 (1,n=32)=
6.03, P < 0.05; 76% vs. 38%, Exp. 2; χ2 (1, n=33) = 5.13, P< 0.05]
andchildren squeezedmoreoften [3.53 vs. 0.87,Exp. 1; t(30)=3.24,
P < 0.005; 3.53 vs. 0.75, Exp. 2; t(31) = 3.57, P < 0.005].
What are the predictions in the converse case, when children are

given explicit cues to selective sampling but a sample that is also
likely under random sampling (three blue balls from the mostly
blue box)? We looked at this in Experiment 5. The experimenter
reached into the three-quarters blue box but provided cues con-
sistent with selective sampling of a specific set of balls (Fig. 2 and
Methods). As noted, ourmodel suggests that when β and n are held
constant, the likelihood ratio (L) gradually decreases as a function
ofα.However, the difference in the likelihood betweenα=0.5 and
α= 1 is small. With the parameters α= 1, β= 0.75, and n= 3, the
model predicts only a slightly lower rate of squeezing (L=0.42) in
Exp. 5 than in the Blue3balls condition of Exp. 1 (L = 0.59) (and
thus of course a higher rate of squeezing than in the Yellow3balls
conditions of Exps. 1 and 2; L = 0.03). Intuitively, this is because
explicit cues that the experimenter is selectively sampling from the
box (consistent with s1) do not indicate that the yellow balls are not
themselves part of the squeaky set that the experimenter is sam-
pling from; thus the inference that the property extends to the
yellow balls continues to depend on β, the ratio of blue and yellow
balls in the box. One could, of course, provide social/pragmatic
cues that would unambiguously establish that the yellow balls were
not being sampled (e.g., by picking the yellow ball, frowning, and
replacing it with a blue ball). However, in that context, infants’
failure to squeak the yellow ball would be overdetermined (i.e.,
they could directly infer that the yellow ball should be avoided).
We thus predicted that children in Exp. 5 would generalize the

property to the yellow ball, squeezing more than the Yellow3balls
condition of Exps. 1 and 2 but no differently from children in the
Blue3balls condition of Exp. 1.
The results were consistent with our predictions. There were no

differences between the results of Exp. 5 and the Blue3balls con-
dition of Exp. 1 with respect to the number of children squeezing
(73% vs. 80%, P = NS) or the mean number of squeezes (2.13 vs.

2.53,P=NS).By contrast,more children squeezed theball inExp. 5
than in theYellow3balls conditions (73% vs. 33%,Exp. 1; χ2 (1, n=
30)= 4.82, P< 0.05; 73% vs. 38%, Exp. 2; χ2 (1, n=31)= 4.01,P<
0.05), and children squeezed the ball more often [2.13 vs. 0.87, Exp.
1; t(28)= 2.09,P< 0.05; 2.13 vs. 0.75, Exp. 2; t(29)= 2.47,P< 0.05].
Thus far we have discussed the joint inference account; we now

turn to the possibility that infants might have default assumptions
about how agents sample evidence. Our data rule out the possibility
that infants assume weak sampling (α fixed to 0). Under the as-
sumption of weak sampling, the model predicts that infants should
squeeze the yellow ball persistently in allfive experiments (that is, the
results of all five conditions should be identical to that of Exp. 4). By
contrast, the likelihood ratios under the strong sampling account (α
fixed to 1) are quite similar to those under the joint inference account
(α = 0.5): Exp. 1, Blue3balls condition, α = 0.5, L= 0.59 vs. α = 1,
L = 0.42; Yellow3balls condition, α = 0.5, L = 0.03 vs. α = 1,
L= 0.02; Exp. 2, Yellow1ball condition, α= 0.5,L= 0.40 vs. α= 1,
L = 0.25; Exp. 3, Yellow2balls condition, α = 0.5, L = 0.12 vs.
α = 1, L = 0.06. Thus our results are consistent with the possibility
that infants expect agents to engage in strong sampling. Looking at
the overall correlation between themodels and our data (mean number
of squeezes) across all eight conditions, both the joint inference model
and the strong sampling account correlatewith the data (joint inference,
r = 0.97, P < 0.001; strong sampling, r = 0.92, P < 0.001); the weak
sampling account does not (r= −0.07, P=NS) (Fig. 3).
Given that infants might expect agents to engage in strong sam-

pling, why consider the possibility that they engage in joint inference?
As noted, one couldmake assumptions about infants’ prior inductive
biases allowing for simpler learningormakeno suchassumptions and
instead credit infants with relatively sophisticated inferential mech-
anisms.Both the currentwork (Exp. 4) andprevious research (11, 12)
establish that infants are sensitive to sampling processes in the pres-
ence of explicit behavioral cues. Given that infants recognize that
agents can engage in weak sampling and that there is as yet no evi-
dence that infants nonetheless expect agents to engage in strong
sampling, joint inference remains a real possibility. That said, con-
siderablework suggests that infantsmake assumptions about rational
agents with respect to intentional goal-directed actions (17–19). It
would be very interesting if the assumption that agents were likely to
engage in selective sampling were part of this repertoire. Thus dis-
tinguishing the strong sampling assumption from the joint inference
account remains an important direction for future research.

Discussion
We presented a formal Bayesian account of how inferences about
theextensionofobject properties froma sampleof evidencedepend
onboth the true extension of the property and the sampling process.
Weshowedempirically that, given identical samples of evidence, 15-
month-old infants make different inferences about the extension of
object properties depending on the probability of the sample. In
particular, we showed that in the absence of behavioral cues to the
sampling process, infants draw inferences consistent with the use of
strong sampling; infants were able to draw normative, flexible
inferences about the extension of an object property given only
a small sampleof positive evidenceor theproperty.Additionally, we
showed that infants recognize that agents can engage in different
sampling processes; given behavioral cues to either weak or strong
sampling, infants varied their inferences accordingly. Across the
eight conditions, the strength of evidence infants observed for dis-
criminating the two hypotheses about the property extension (all
balls squeak vs. only blue balls squeak) predicted their general-
izations. Finally, as predicted quantitatively by the Bayesian model,
we provided suggestive evidence that infants’ inferences are graded
with respect to the size of the sample.
We found that both the number of children squeezing and the

mean number of squeezes across conditions were consistent with
the model predictions. Although the likelihood ratio and these
dependent measures were highly correlated, the differences be-
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tween the group means in the number of squeezes were mainly
driven by the children who did not squeeze at all. Additionally,
the all-or-none measure of whether a child squeezed or not
showed the same qualitative pattern as the mean number of
squeezes. Further computational and empirical research might
clarify exactly which aspects of behavior the model predicts.
Throughout, we have looked at the probability that a sample

might be randomly generated from thewhole population.However,
it is possible that children are also sensitive to a differentmeasure of
likelihood: the degree to which evidence is representative of the
population (i.e., the degree to which the evidence in the sample
distinguishes the target population from alternative populations).
Three blue balls, for instance, may be the most probable draw from
a mostly blue box but this sample fails to distinguish a mostly blue
box fromanentirely bluebox.By contrast, a sample consistingof two
blue balls and one yellow ball may be a less probable sample but
a more representative one (in that it distinguishes the entirely blue
from the mostly blue box). The distinction did not arise in the cur-
rent work because the samples were never distinctively represen-
tative (the sample always consisted of only blue balls although the
box contained both blue and yellow balls). However, Bayesian in-
ference models can formally capture this distinction (20), and
comparing infants’ sensitivity to these different measures of likeli-
hood is an intriguing area for future research.
Although we have focused on the distinction between strong and

weak sampling assumptions, a variety ofmore complexmodelsmight
account for the current data.A childmight infer, for instance, that the
agent intends to sample squeaky balls and knows which balls squeak,
believes that all of the balls squeak, or believes that some balls squeak
but does not know which ones. Alternatively, the child might assume
that the agent is drawing the sample to teach the child which balls
squeak. Recent work in computational modeling has suggested for-
malizations of both such intentional and pedagogical sampling
assumptions (21, 22). These models make different predictions in
a variety of tasks; however, in the current paradigm, the predictions
are qualitatively the same.Herewehave opted for the simplestmodel
that could explain our data; future researchmight assess the extent to
which infants distinguish more complex sampling assumptions.
Even the current results, however, speak to the sophistication of

children’s reasoning. These findings suggest that infants make accu-
rate generalizations from sparse data, in part because their inferences
are sensitive to how the sample of evidence reflects the population.
These results are consistent with the theoretical stance than humans
are rational learners from the earliest stages of development. Babies
who have just learned to say “mama” andmay not yet say “ball”may

knowsomethingabout thegoalsof the formerand infer theproperties
of the latter simply by attending to the rich statistics of everyday life.

Methods
Behavioral Study. Subjects. One hundred thirty infants (mean, 15 months, 15
days; range, 13–18 months; 49% girls) were recruited from a local Children’s
Museum. Fifteen participants were replaced due to (i) fussing out, (ii) refusal
to touch the stimuli, or (iii) parental interference. Three additional infants
were replaced due to experimental error; one infant in the Yellow3balls
condition in Exp. 2 was an outlier, squeezing the ball 3 standard deviations
more than the mean, and was excluded from subsequent analysis.
Materials. Two foam-board boxes were used (30 × 45 × 30 cm). One contained
12 blue and 4 yellow balls; the other contained 4 blue and 12 yellow balls. All
balls were visible through a window in the front of the boxes. The top of
each box had a hidden compartment from which the target balls could be
pulled (Exps. 1–3 and 5) or poured (Exp. 4), without changing the view
through the window. The yellow and blue balls were perceptually similar
but the yellow balls had wooden handles, providing a “banging” affordance
so the child could readily engage in a behavior other than squeezing. The
blue balls squeaked; the yellow balls were inert.
Procedure. Childrenwere tested individually. A box sat on a table in front of the
child, covered with a cloth. The experimenter revealed the box and drew the
child’s attention to its contents by pointing to the window. In Exps. 1–3, the
experimenter glanced into the box, pulled out a blue ball, squeezed it so that it
squeaked, and then set it on the table. She repeated this until she pulledout the
number of blue balls for the condition. The experimenter paused, then pulled
out a yellowball and put it in front of the child saying, “Here you go, you can go
ahead and play.” If the child did not touch the ball, she encouraged the child
again. The child was allowed to play for 30 sec. In Exp. 4, rather than pulling the
balls out, the experimenter shook the box upside down to let the balls fall out.
Then she told the child, “The next one is going to be yours.” This comment was
added to prevent the infants from anticipating that they would get the box to
shake (rather than the balls to squeeze). She shook the box again to let a yellow
ball fall out and gave it to the child. In Exp. 5, the experimenter peered into the
box and took approximately twice as long as in Exps. 1–3 to pull each blue ball
out. As she took the blue ball out, she said, “Aha, here it is, look!” and smiled.
After threeballswere removed, she said,“Thenextone isgoingtobeyours”and
shook the yellow ball out (matching Exp. 4). In all conditions, children’s actions
during the 30 sec of play were coded. An additional coder, blind to condition,
recoded all data. Intercoder reliability averaged 94.7%. Parents provided in-
formed consent; the MIT Institutional Review Board approved the research.
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