
Developmental Science. 2017;e12553.	 wileyonlinelibrary.com/journal/desc�  |  1 of 13
https://doi.org/10.1111/desc.12553

© 2017 John Wiley & Sons Ltd

Received: 11 December 2015  |  Accepted: 5 December 2016
DOI: 10.1111/desc.12553

P A P E R

Changing minds: Children’s inferences about third party belief 
revision

Rachel W. Magid1,* | Phyllis Yan1,2,* | Max H. Siegel1 | Joshua B. Tenenbaum1 |  
Laura E. Schulz1

*The first two authors contributed equally to this work.

1Department of Brain and Cognitive 
Sciences, Massachusetts Institute of 
Technology, Cambridge, Massachusetts, USA
2Department of Statistics, University of 
Michigan, Ann Arbor, Michigan, USA

Correspondence
Rachel Magid, Department of Brain and 
Cognitive Sciences, Massachusetts Institute of 
Technology, 77 Massachusetts Ave, 46-4011, 
Cambridge, MA 02139, USA
Email: rwmagid@mit.edu

Funding information
Division of Computing and Communication 
Foundations, Grant/Award Number: 1231216; 
Division of Research on Learning in Formal 
and Informal Settings, Grant/Award Number: 
0744213; Center for Brains, Minds, and 
Machines (CBMM); NSF STC, Grant/Award 
Number: CCF-1231216; National Science 
Foundation, Grant/Award Number: 0744213

Abstract
By the age of 5, children explicitly represent that agents can have both true and false 
beliefs based on epistemic access to information (e.g., Wellman, Cross, & Watson, 
2001). Children also begin to understand that agents can view identical evidence and 
draw different inferences from it (e.g., Carpendale & Chandler, 1996). However, much 
less is known about when, and under what conditions, children expect other agents to 
change their minds. Here, inspired by formal ideal observer models of learning, we 
investigate children’s expectations of the dynamics that underlie third parties’ belief 
revision. We introduce an agent who has prior beliefs about the location of a popula-
tion of toys and then observes evidence that, from an ideal observer perspective, 
either does, or does not justify revising those beliefs. We show that children’s infer-
ences on behalf of third parties are consistent with the ideal observer perspective, but 
not with a number of alternative possibilities, including that children expect other 
agents to be influenced only by their prior beliefs, only by the sampling process, or 
only by the observed data. Rather, children integrate all three factors in determining 
how and when agents will update their beliefs from evidence.

RESEARCH HIGHLIGHTS

•	 Understanding the conditions under which other agents will change 
their minds is a key component of social cognition.

•	 Considerable evidence suggests that children themselves learn 
rationally from data: integrating evidence with their prior beliefs.

•	 Do 4- to 6-year-olds expect other agents to learn rationally? 
Can they use others’ prior beliefs and data to predict when third 
parties will retain their beliefs and when they will change their 
minds?

•	 Here we use a computational model of rational learning to motivate 
predictions for an ideal observer account, as well as five alternative 
accounts. We found that children expect third parties to be rational 
learners with respect to their own prior beliefs.

•	 The data were not consistent with alternative accounts. In particu-
lar, children did not expect others simply to retain their own prior 
beliefs, learn from the data without integrating it with their prior 

beliefs, or share the children’s beliefs. Rather, children expected 
agents to learn normatively from evidence.

1  | INTRODUCTION

Expectations of rational agency support our ability to predict other 
people’s actions and infer their mental states (Dennett, 1987; Fodor, 
1987). Adults assume that agents will take efficient routes towards 
their goals (D’Andrade, 1987; Heider, 1958), and studies with infants 
suggest that these expectations emerge very early in development 
(Skerry, Carey, & Spelke, 2013). By the end of the first year, infants 
can use situational constraints, along with knowledge about an agent’s 
goal, to predict an agent’s actions. Similarly, they use knowledge of an 
agent’s actions and situational constraints to infer the agent’s goal, as 
well as knowledge of an agent’s actions and goal to infer unobserved 
situational constraints (Csibra, Bíró, Koós, & Gergely, 2003; Gergely & 
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Csibra, 2003; Gergely, Nádasdy, Csibra, & Bíró, 1995). Such work has 
inspired computational models of theory of mind that formalize the 
principle of rational action and successfully predict human judgments 
(Baker, Saxe, & Tenenbaum, 2009; Baker, Saxe, & Tenenbaum, 2011; 
Jara-Ettinger, Baker, & Tenenbaum, 2012). Here however, we ask 
whether learners’ expectations extend to the more colloquial meaning 
of the word ‘rational’: the expectation that other people’s judgments 
and beliefs have a basis in the evidence they observe.

Note that this is distinct from the question of whether children 
themselves draw rational inferences from data. Decades of research 
suggest that very young children can integrate prior beliefs with small 
samples of evidence to infer the extensions of word meanings, identify 
object categories, learn causal relationships, and reason about others’ 
goal-directed actions (see Gopnik & Wellman, 2012; Schulz, 2012; 
and Tenenbaum, Kemp, Griffiths, & Goodman, 2011, for reviews). 
However, despite extensive work on children’s theory of mind (see 
Wellman, 2014, for discussion and review), less is known about how 
children expect others to learn from evidence. Although classic the-
ory of mind tasks look at whether children expect others to update 
their beliefs given diverse forms of epistemic access to data – includ-
ing direct perceptual access (e.g., Wimmer & Perner, 1983), indirect 
clues (e.g., Sodian, Taylor, Harris, & Perner, 1991) and testimony (e.g., 
Zaitchik, 1991) – these involve a relatively simple instantiation of the 
expectation that others will learn based on their observations of the 
world: children need only understand whether the agent does, or does 
not, have epistemic access to belief-relevant information. Such stud-
ies do not ask whether children understand that agents might eval-
uate evidence differently or draw different inferences from identical 
evidence.

The studies that do look at children’s understanding of how third 
parties might evaluate evidence suggest that an ‘interpretative the-
ory of mind’ is a relatively late development (Astington, Pelletier, & 
Homer, 2002; Carey & Smith, 1993; Chandler & Carpendale, 1998; 
LaLonde & Chandler, 2002; Myers & Liben, 2012; Pillow & Mash, 
1999; Ross, Recchia, & Carpendale, 2005; Ruffman, Perner, Olson, & 
Doherty, 1993). Not until 6 and 7 years do children understand, for 
example, that an ambiguous line drawing can be viewed as two dif-
ferent kinds of animals (Carpendale & Chandler, 1996) or that iconic 
symbols are subject to different interpretations (Myers & Liben, 2012). 
Young children’s failure to understand that agents can reach different 
conclusions from the same evidence suggests that children might have 
difficulty understanding how other agents’ prior knowledge affects the 
interpretation of data.

Arguably, however, understanding that evidence is ambiguous and 
thus open to interpretation may be more challenging than understand-
ing the conditions under which others might be expected to learn from 
evidence. Relatively little work has looked at what children understand 
about others’ inferences from data, and the findings here are mixed. 
For instance, both 4- and 6-year-olds recognize that an unseen marble 
must be blue if it is drawn from a bag containing only blue marbles; 
however, only 6-year-olds recognize that a third party (who knows the 
contents of the bag) will make the same inference and thus know the 
color of the marble (Sodian & Wimmer, 1987). However, 4-year-olds 

do understand that if covariation evidence suggests that one of two 
causes is correlated with an outcome and the experimenter tricks a 
puppet by reversing the evidence, the puppet will conclude that the 
wrong variable is the cause (Ruffman et al., 1993).

Such studies suggest that by 4, children are at least beginning to 
understand that third parties learn from evidence in ways that go beyond 
mere perceptual access to data. However, they leave open the question 
of whether children can use patterns of evidence to understand when 
others will change their minds, and the degree to which children inte-
grate others’ prior beliefs in predicting their learning. Do children expect 
others to update their beliefs from data in cases where learning requires 
representing not merely an agent’s access to evidence but the agent’s 
ability to draw appropriate inferences from the evidence?

To ask whether children expect others to rationally update their 
beliefs from data we borrow from two influential tasks in the litera-
ture. The first is the classic false belief task (Wimmer & Perner, 1983). 
The other is derived from work looking at infants’ and children’s under-
standing of the relationship between samples and populations (e.g., 
Denison & Xu, 2014; Gweon, Tenenbaum, & Schulz, 2010; Kushnir, 
Xu, & Wellman, 2010; Xu & Denison, 2009; Xu & Garcia, 2008). 
Specifically, we show a child and another agent (a Frog puppet) two 
boxes: one containing more rubber ducks than ping-pong balls (the 
Duck box) and one containing more balls than ducks (the Ball box). 
The Frog leaves, and the child watches as the boxes are either moved 
and returned to the same location (so the Frog has a true belief about 
the location of each box) or switched (so the Frog has a false belief 
about the location of each box). At test, the Frog returns, and both the 
child and the Frog watch as the experimenter reaches into the Duck 
box and draws a sample of three or five ducks either apparently at 
random (without looking into the box) or selectively (looking in and 
fishing around). After both the child and the Frog see the sample of 
data, children are asked, ‘Where does Froggy think the Duck box is 
now?’ See Figure 1 for a schematic of the procedure.

Both the ability to reason about others’ false beliefs (see Baillargeon, 
Scott, & He, 2010) and the ability to recognize when data are sam-
pled randomly or selectively (e.g., Xu & Denison, 2009) emerge rela-
tively early in development. However, children do not reliably provide 
accurate responses in explicit false belief tasks until later childhood 
(see Wellman, Cross, & Watson, 2001, for review) and as noted, the 
ability to understand that identical evidence can be open to different 
interpretations emerges even later (e.g., Astington et al., 2002; Carey 
& Smith, 1993, Chandler & Carpendale, 1998; LaLonde & Chandler, 
2002; Myers & Liben, 2012; Pillow & Mash, 1999; Ross et al, 2005; 
Ruffman et al., 1993). Because we are interested not in children’s own 
inferences from the data, but in their inferences on behalf of a third 
party whose beliefs may differ both from the child’s own and those 
supported by the observed data, here we focus on 4.5- to 6-year-olds.

As shown in Table 1, if children expect the Frog to update his 
beliefs from evidence, then the cross between old and new locations 
and random and selective sampling predicts a pattern of responses 
distinct from the pattern that would be generated if children adopted 
many other possible response strategies. We will walk through the 
predictions of our account intuitively; however, to clarify our proposal, 



     |  3 of 13MAGID ﻿et al.﻿

F IGURE  1 Schematic of the procedure. In the Preference phase (a) children are shown the two boxes with different proportions of ducks 
and balls and asked to identify the Duck box and Ball box based on each box’s majority object. Then children are introduced to the Frog puppet 
and his preference for ducks and the Duck box and then learn, along with the Frog, that the boxes can either each move back and forth to stay 
in the same location or move from one side to the other to switch locations. In the Belief Phase (b) children either see the boxes switch locations 
(New Location condition) or stay in the same location (Old Location condition) while the Frog is absent. When the Frog returns, he will either 
have a false belief about the location of the Duck box (New Location condition) or a true belief about the location of the Duck box (Old Location 
condition). Children are asked two check questions to confirm that they have tracked the locations of the boxes and the Frog’s belief at the end 
of the Belief Phase. In the Sampling Phase (c) the Frog returns and the experimenter samples either randomly (Random Sampling condition) or 
selectively (Selective Sampling condition) from the hidden Duck box. At the Test Phase children are asked where the Frog thinks the Duck box is
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we also include a computational model providing quantitative pre-
dictions for both our account and a number of alternatives, in each 
experimental condition (see Figure 4 and Appendix S1). The details of 
the model are not critical to our proposal as our goal here is not to 
evaluate the Rational Learning model per se. Given that there are only 
five conditions, and some of them (e.g., both selective sampling condi-
tions) make overlapping predictions, correlations between the model 
and children’s performance may be less convincing than the relative fit 
of the Rational Learning model in comparison to the alternative mod-
els. That is the analysis we include here. In addition, it is helpful to 
consider the qualitative intuitions behind these models insofar as they 
motivate our predictions and ground our intuitions in a precise state-
ment of what constitutes ‘rational inference’ in this context.

1.1 | Predictions of the rational inference account

If children expect agents to rationally update their beliefs, they should 
respond jointly to the type of sampling process and the Frog’s prior 
beliefs about the boxes’ locations together with his knowledge that 
the boxes can move. A sample randomly drawn from a population is 
likely to be representative of the population. Thus we predict that in 
the Random Sampling conditions, children should expect the Frog to 
use the evidence to verify or update his beliefs about the location of 
the Duck box.

Specifically, randomly sampling three ducks in a row is improbable 
unless the evidence is sampled from the Duck box. Thus when evi-
dence is randomly sampled from the Old Location (OL/RS), children 
should infer that the Frog will retain his belief and will continue to 
think that the Duck box is in the Old location. However, when evi-
dence is randomly sampled from the New Location (NL/RS_3 ducks 
and NL/RS_5 ducks) children should believe that the Frog may now 

update his former false belief, inferring that the Duck box may have 
been moved to the New Location. Moreover, the strength of children’s 
inferences should depend, in a graded way, on the strength of evi-
dence they observe: they should be more confident that the Frog will 
change his mind when they see five ducks randomly drawn from the 
New Location (NL/RS_5 ducks) than when they see three ducks (NL/
RS_3 ducks) randomly drawn.

By contrast, selectively sampled evidence is uninformative about 
the population from which it is drawn. The experimenter can selec-
tively draw any sample at all (representative or non-representative) 
from the population. Indeed, if the experimenter is trying to guaran-
tee that she gets three ducks in a row, she should sample selectively 
regardless of whether she is drawing from the population where ducks 
are relatively common (the Duck box) or the population where ducks 
are relatively rare (the Ball box). Since the selectively sampled evi-
dence is consistent with sampling from either box, a rational learner 
who integrates his prior beliefs with the data should retain his prior 
beliefs. That is, because both the Old and New Location are consis-
tent with the data and only the Old Location is consistent with the 
agent’s prior beliefs, we predict that children will expect the Frog to 
say the Duck box is in the Old Location in both the Old (OL/SS) and 
New Location (NL/SS) Selective Sampling conditions.

1.2 | Alternative accounts

In contrast to the pattern of responses consistent with third party 
rational inference (Table 1, row a), there are a number of other ways 
children might respond to the question ‘Where does Froggy think the 
Duck box is now?’ Children might respond with the actual location 
of the Duck box; this is, after all, the location from which the Frog 
sees the ducks sampled, and also of course consistent with what the 

TABLE  1 The predictions for the dominant response pattern if children expect other agents to engage in rational learning from data are 
listed in row a. The * indicates that the probability that children think the Frog will change his mind should depend on the strength of the 
evidence the Frog observes. Possible alternative patterns of responses to the test question in each of the four conditions: New Location/
Random Sampling (NL/RS); New Location/Selective Sampling (NL/SS); Old Location/Random Sampling (OL/RS); Old Location/Selective 
Sampling (OL/SS). OLD indicates that the child would point to the original location of the Duck box and NEW that the child would point to the 
new location

Response pattern

New Location 
Random Sampling 
NL/RS

New Location  
Selective Sampling 
NL/SS

Old Location 
Random Sampling 
OL/RS

Old Location 
Selective Sampling 
OL/SS

a. Rational Learning NEW* OLD OLD OLD

b. A�ctual location (or child’s 
own beliefs) 

NEW NEW OLD OLD

c. F�rog’s beliefs  
(without updating  
from data)

OLD OLD OLD OLD

d. S�ampled data  
(without prior  
beliefs) 

NEW CHANCE OLD CHANCE

e. R�andom-Stay; 
Selective-Shift

NEW OLD OLD NEW

f. Chance CHANCE CHANCE CHANCE CHANCE
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children themselves believe (row b, Table 1). Alternatively, children 
might respond with the Frog’s true or false belief about the loca-
tion of the Duck box, considering whether the Frog saw the boxes 
moved or not but without expecting Frog to update his beliefs given 
the sampled evidence (row c, Table 1). Another possibility is that chil-
dren might expect the Frog to attend to the sampled evidence but not 
integrate it with his prior beliefs; they may conclude that if the Frog 
sees randomly sampled evidence he will strongly conclude that the 
Ducks are in that location, but if he sees selectively sampled evidence, 
he will recognize that the evidence is uninformative and choose at 
chance (row d, Table 1). Yet another possibility is that the children 
think the Frog will attend to the sampled evidence but not as a rational 
learner would; they might, for instance, think that Frog will conclude 
that random sampling indicates that the sample of ducks is pulled from 
the Duck box and that selective sampling of ducks means the sam-
ple is pulled from the Ball box (row e, Table 1). Finally, children might 
respond at chance, either because they genuinely believe that the 
Frog will guess or because different children choose different strate-
gies and thus, as a group, generate responses indistinguishable from 
chance responding (row f, Table 1). Corresponding to the qualitative 
predictions shown in Table 1, Figure 4 shows quantitative predictions 
for the rational inference account and each of the alternative accounts 
for all of the conditions in our study. The model predictions can be 
compared with children’s behavioral data.

In the experiment to follow, we test these different accounts and 
predict that children’s responses will be best explained as inferring 
that the Frog will rationally integrate his prior belief about the boxes’ 
locations with the type of sampling process he observes. Note that 
this specific pattern of responding requires children to track simul-
taneously the true location of the Duck box, the Frog’s belief about 
the location of the Duck box, and the probability of generating the 
observed sample from the population. The complexity of the task is 
necessary to distinguish children’s responding to a third party’s updat-
ing of his beliefs from responses children might make on other grounds 
(see Table 1). However, given the complexity of the task, we expected 
a number of children to have difficulty tracking the true location of the 
Duck box and the Frog’s beliefs about the boxes’ locations (especially 
as the boxes were occluded through much of the task and differed 
only in the relative proportion of their contents). Of course, children 
can only reason accurately about how the Frog might update his 
beliefs given the sample if they remember both the true location of the 
Duck box and the Frog’s beliefs about the location. Thus we made an 
a priori decision to focus our analysis on the responses of the children 
who successfully answered both check questions.

2  | METHOD

2.1 | Participants and materials

Two hundred six children (mean: 66 months; range: 54–83 months) 
were recruited from an urban children’s museum and participated in 
the study. The testing occurred in three waves in the following order: 
NL/RS_3 and NL/SS; OL/RS and OL/SS; NL/RS_5. Within each wave 

of testing children were randomly assigned to condition. Testing con-
tinued until 30 children passed the check questions in each condi-
tion. (See Inclusion Questions to follow.) While most of the children 
were white and middle class, a range of ethnicities and socioeconomic 
backgrounds reflecting the diversity of the Boston metropolitan 
area (47% European American, 24.4% African American, 8.9% Asian, 
17.5% Latino, 3.9% two or more races) and the museum population 
(29% of museum attendees receive free or discounted admission) 
were represented.

Two black cardboard boxes (30 cm3) were each separated into 
two sections by a cardboard barrier. The front side of both boxes was 
a clear plastic panel with a sheet of black felt velcroed over it. Each 
box had a hand-sized hole in the top. For one box, referred to as the 
‘Duck box’, the front section was filled with 45 rubber ducks and 15 
ping-pong balls. For the other box, referred to as the ‘Ball box’, the 
front section was filled with 45 ping-pong balls and 15 rubber ducks. 
(3:1 ratios were chosen because they are easily discriminable by pre-
schoolers and because three consecutive ducks are far more likely to 
be randomly sampled from the Duck box than the Ball box.) The back 
sections of both boxes also contained rubber ducks and ping-pong 
balls, and were hidden from view. Each box was placed on a colored 
mat. A Frog puppet served as the agent.

2.2 | Design and procedure

We crossed the two locations where the Duck box could be at the 
end of the study (Old and New) and two kinds of sampling processes, 
sampling three ducks, from the Duck box (Random and Selective), 
yielding four conditions: the Old Location/Random Sampling (OL/
RS) condition, the New Location/Random Sampling (NL/RS_3 ducks) 
condition, the Old Location/Selective Sampling condition (OL/SS), and 
the New Location/Selective Sampling (NL/SS) condition. We also ran 
a condition in the New Location/Random Sampling case in which chil-
dren saw a sample of five ducks drawn from the New Location (NL/
RS_5 ducks). We included this condition to ask whether children drew 
graded inferences that depended on the amount of randomly gener-
ated data the Frog observes (i.e., children should be more likely to 
think the Frog might change his mind given more randomly sampled 
data inconsistent with his prior beliefs).

2.2.1 | Preference phase

In all conditions, the experimenter showed the child the Duck and 
Ball boxes side-by-side on a table (L/R counterbalanced across par-
ticipants). Each box was placed on a different colored mat, red or blue, 
to help children track the identities of the boxes. Initially, the felt hid 
the boxes’ front sections. Children were given a duck and a ball, not 
drawn from either box to hold briefly. The experimenter then lifted 
the felt, revealing the front sections of both boxes and said, ‘One box 
has mostly ducks, and one box has mostly balls. Which box has mostly 
ducks? Which box has mostly balls?’ If the child answered incorrectly, 
the experimenter told the child the correct answer and repeated the 
questions.
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Next, the experimenter introduced the agent, ‘Froggy’, saying, 
‘This is my friend Froggy!’ The experimenter said, ‘Froggy likes ducks 
better than balls.’ The experimenter then asked the Frog if he wanted 
to play with the ball. The Frog replied, ‘No, I only like ducks!’ The child 
was asked to hand the Frog his favorite toy. The Frog’s preference 
for ducks was established to help children track the Frog’s goal of 
locating the Duck box. Next, both the child and the Frog learned that 
the boxes could move in two ways. The experimenter said, ‘The boxes 
can move so that they are in the same place’, and ‘The boxes can move 
so that they are in different places.’ (For the former, the experimenter 
rocked the boxes back and forth three times. For the latter, the exper-
imenter moved the Duck box from the red mat to the blue one and 
the Ball box from the blue mat to the red one, or vice versa; counter-
balanced across participants.) The experimenter then asked the Frog, 
‘Which box do you like best?’ The Frog approached the Duck box and 
said, ‘I like this box! I like the Duck box!’ The experimenter returned 
the boxes to their original locations. The experimenter asked the child 
to point to the box the Frog preferred; all children answered correctly.

2.2.2 | Belief phase

Next, the experimenter told the child that the Frog was tired and hid 
him under the table. Children watched as the experimenter re-covered 
the front of both boxes with the felt. For children in the Old Location 
conditions, the experimenter rocked the boxes back and forth saying, 
‘I’m going to move the boxes so that they are in the same place.’ For 
children in the New Location conditions, the experimenter switched 
the locations of the boxes saying, ‘I’m going to play a trick on Froggy! 
I’m going to move the boxes so that they are in different places.’

Inclusion questions
In both conditions, the experimenter then asked children two ques-
tions to check that they understood the true locations of the boxes 
(location check) and the Frog’s beliefs about the boxes (belief check). 
The location check question was, ‘Where is the Duck box?’ The belief 
check question was, ‘Where does Froggy think the Duck box is?’

2.2.3 | Sampling phase

The experimenter brought the Frog back saying, ‘Look, Froggy is back!’ 
The experimenter asked the Frog to watch the two boxes and then 
responded to a pretend phone call saying, ‘Hello? Oh, you want me to 
take three (five in the NL/RS_5 condition) ducks from the box on the 
red (blue) mat?’ (The experimenter always named the actual location 
of the Duck box.) We included the phone call to dispel any impression 
that the experimenter was pedagogically sampling from the box in 
order to teach the Frog (or child) the actual location of the Duck box. 
Note that pedagogical sampling is always selective, but intentional 
sampling can be either random or selective: one can intentionally pull 
objects out at random or intentionally choose particular objects (see 
e.g., Gweon et al., 2010, for discussion). In the Random Sampling con-
ditions, the experimenter looked over her shoulder (i.e., not into the 
box) and reached through the hole into the Duck box three times in 

rapid succession, drawing out a duck each time and counting out ‘One, 
two, three (four, five, only in the NL/RS_5 condition)’. In the Selective 
Sampling conditions, the experimenter peered through the hole into 
the Duck box and kept her hand inside the box for approximately 
2 seconds before retrieving a duck. She counted, ‘One… two… three’ 
after finding each duck. After sampling three ducks from the box and 
ending the pretend phone call, the experimenter asked, ‘Froggy, did 
you see that?’ to which the Frog replied, ‘Yes.’

2.2.4 | Test phase

In the final phase of the experiment after the sample of three ducks 
was drawn, children were asked the critical test question: ‘Where 
does Froggy think the Duck box is now?’

3  | RESULTS

3.1 | Inclusion questions

Children’s responses were coded from videotape by the first authors. 
Forty-seven percent of the data was coded by a second coder, 
blind to condition and hypotheses. Inter-coder reliability was high 
(Kappa = .95, 98% agreement).

We coded children’s responses to the location (‘Where is the duck 
box?’) and belief (‘Where does Froggy think the duck box is?’) check 
questions. Of the 206 children tested, 73% (N = 150) answered both 
questions correctly (‘trackers’) and 27% (N = 56) answered one or 
both of the check questions incorrectly (‘non-trackers’). The number 
of children excluded for failing only the location question, only the 
belief question or both by condition is as follows: NL/RS_3: location: 
6; belief: 2; both: 4; NL/RS_5: location: 0; belief: 7; both: 8; NL/SS: 
location: 1; belief: 12; both: 4; OL/RS: location: 4; belief: 3; both: 0; 
OL/SS: location: 1; belief: 4; both: 0.

Non-trackers were younger than trackers (non-trackers: 
M = 64 months; trackers: M = 67 months; t(204) = 2.52, p = .01, 
d = .39). Non-trackers may have subsequently given responses about 
the Frog’s belief that did not reflect information necessary to make 
accurate rational inferences on behalf of the Frog so we excluded 
these children from our primary analysis. This resulted in a final sample 
of N = 150 (53% female1 ) children across the five conditions: NL/RS_3 
(n = 30, mage = 65 mo.; range: 54–78 months), NL/SS (n = 30, mage = 66 
mo.; range: 54–82 months), OL/RS (n = 30, mage = 66 mo.; range: 
54–81 months), OL/SS (n = 30, mage = 68 mo.; range: 55–82 months), 
and NL/RS_5 (n = 30, mage = 69 mo.; range: 57–83 months). Age in 
months did not differ across conditions (F(4, 145) = 1.05, p = .38).

Note that more children failed the inclusion questions in the New 
Location condition than the Old Location condition (unsurprisingly 
since the New Location condition involved tracking both a change of 
location and representing a false belief). On average, 8.67 more chil-
dren were excluded for failure to track the boxes’ locations and/or the 
Frog’s beliefs in the three New Location conditions than the two Old 
Location conditions (a 33% exclusion rate versus a 17% exclusion rate; 
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p = .01). This raises the possibility that the included sample of children 
in the New Location might differ from those in the Old Location con-
dition in any of a number of ways (e.g., including being more attentive 
or motivated, having better theory of mind or executive function skills, 
or differing with respect to other cognitive abilities).

Critically, however, the rational learning account does not predict 
better, or even simply uniformly different performance in the New 
Location conditions than the Old Location conditions (predictions 
whose investigation could be confounded to the degree that one 
group of children met more stringent inclusion criteria than the other). 
Rather, it predicts a precise pattern of responses depending jointly 
on the Frog’s initial beliefs about the boxes’ location, the sampling 
process, and the amount of evidence observed. That is, this account 
makes predictions within each condition (where there are no differ-
ences in exclusion rates) and also predicts both commonalities and 
differences across conditions. Neither the prediction that, within each 
condition, children should be more likely to expect the Frog’s beliefs 
to be informed by randomly than selectively sampled evidence, nor the 
prediction that children should draw stronger inferences for the Old 
than the New Location condition given randomly (but not selectively) 
generated evidence, can be accounted for by an overall difference 
between the two conditions.

3.2 | Test question

Because we had a priori hypotheses about the pattern of results, we 
performed planned linear contrasts. We formalized the prediction 
that the responses in the New Location/Random Sampling conditions 

would differ from the other three conditions, and that the other 
three conditions would not differ from each other by conducting the 
analyses with following weights: New Location/Random Sampling 
with three ducks (3), the New Location/Selective Sampling (−2), the 
Old Location/ Random Sampling (−2), the Old Location/Selective 
Sampling (−2), and the New Location/Random sampling with five 
ducks (3).

For the 150 children who recalled the Frog’s belief as well as 
the boxes’ actual locations, the linear contrast was significant (F(1, 
149) = 19.54, p < .001, η2 = .35). Children were significantly more 
likely to believe that the Frog had updated his belief to the New 
Location in the New Location/Random Sampling conditions than in 
the other conditions (percentage of children choosing New Location 
by condition: NL/RS_3: 63%; NL/RS_5: 77%; NL/SS: 13%; OL/RS: 3%; 
OL/SS: 27%; see Figure 2).

By contrast, for the children who answered at least one of the 
check questions incorrectly (the non-trackers), the linear contrast 
was not significant (F(1, 55) = 1.78, p = .15, η2 = .12). Instead, children 
appeared to either respond at chance or respond to the last location 
where they had seen the ducks (see Figure 3). Crucially, these results 
suggest that the children who met the inclusion criteria were not sim-
ply defaulting to some baseline response pattern but were instead 
responding as predicted: inferring that the Frog would rationally 
update his beliefs from the data.

We restrict our analyses to children who pass the inclusion criteria 
because there is no clear way to interpret the responses of children 
who lost track of the boxes’ location or failed to represent the Frog’s 
initial beliefs. However, the linear contrast remains significant if all 206 

F IGURE  3 Proportion of children who failed the inclusion criteria 
(‘non-trackers’) who chose the New Location in each condition in 
response to the test question about the Frog’s belief

Linear Contrast: F(1, 55) = 1.78, p = .15, η2 = .12

F IGURE  2 Proportion of children who passed the inclusion 
criteria (‘trackers’) who chose the New location in each condition in 
response to the test question about the Frog’s belief

Linear Contrast: F(1, 149) = 19.54, p < .001, η2 = .35
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children are included (F(1, 205) = 10.314, p < .001, η2 = .22), suggest-
ing that the results are robust to the exclusion criteria.

Looking within each condition, children chose the Old Location 
significantly more often than chance in all conditions (percentage of 
children choosing Old Location: NL/SS: 87%, p < .001; OL/RS: 97%, 

p < .001; OL/SS: 73%, p = .02; by binomial test) except the NL/RS_5 
condition where they chose the New Location above chance (77% of 
children choosing New; p = .005 by binomial test) and the NL/RS_3 
condition where they chose at chance (63% of children choosing New; 
p = .20 by binomial test).

TABLE  2 Bayes factor analyses comparing the Rational Learning model with the alternative models

Correct Location Prior Belief Random-Stay/Selective-Shift Sampled Data Chance

Rational Learning: 33.73: 1 42.98: 1 26.32: 1 45.80: 1 146.20: 1

F IGURE  4 Predictions made by the 
Rational Learning Model for the rational 
inference model along with the five 
alternative models (b–f). The Rational 
Learning Model (a) provides the best fit to 
the children’s responses. (See Figure 2 and 
Table 1.)
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Our hypothesis made several key predictions about differences 
between conditions. First, if children expect the Frog to be sensitive 
to the distinction between randomly sampled and selectively sampled 
evidence, then given the same prior beliefs and evidence, they should 
expect the Frog to draw stronger inferences from randomly sampled 
evidence than selectively sampled evidence. Children’s inferences did 
indeed depend on the type of evidence sampled. In the comparison 
between the New Location/Random Sampling_3 condition and the 
New Location/Selective Sampling condition children were more likely 
to update the Frog’s false belief and infer that the Duck box was in the 
New Location in the Random Sampling than the Selective Sampling con-
dition, as warranted (Fisher’s exact, p < . 001). Similarly, children were 
more likely to think the Frog would infer that the Duck box was in the 
Old Location in the Old Location/Random Sampling condition com-
pared to the Old Location/Selective Sampling condition (Fisher’s exact, 
p = .03). The fact that children made comparable inferences in both con-
ditions suggests that the results cannot be explained by differences in 
children’s belief understanding in the two conditions (i.e., as a byproduct 
of the different inclusion rates in the New and Old Location conditions). 
Rather, children’s tendency to expect the Frog’s beliefs to be more 
influenced by randomly sampled than selectively sampled evidence in 
both conditions is consistent with the Rational Learning account since, 
indeed, randomly sampled evidence is more informative than selectively 
sampled evidence about the population from which it is drawn.

Also as predicted, numerically more children said the Frog would 
update his belief when five ducks were randomly sampled than 
when three ducks were randomly sampled. The difference between 
the NL/RS_3 condition and NL/RS_5 condition was not significant 
(Fisher’s exact, p = .40); however, the graded nature of children’s 

inferences was consistent with the predictions of the rational infer-
ence model.2

Finally, as predicted, children were sensitive to the Frog’s prior 
beliefs. Given identical evidence and sampling processes, children 
drew different inferences when the data were sampled from the Old 
Location and the New Location. Thus given three ducks randomly 
sampled from a location, children’s inferences about what he would 
learn from the sample depended on the Frog’s prior beliefs about the 
location of the Duck box. Children were confident that the Frog would 
believe the randomly sampled data indicating that the Duck box was 
in the old location (97% of children in the OL/RS chose Old) but did 
not make as strong an inference when the randomly sampled data 
suggested the Duck box was in the New Location (63% of children in 
the NL/RS_3 chose New; OL/RS vs. NL/RS_3, Fisher’s exact, p = .002). 
The analogous comparison between the selective sampling conditions 
was also significant. The Rational Learning model predicts that children 
should choose the Old Location in both selective sampling conditions 
because selective sampling is uninformative about the population 
from which it is drawn. As predicted, children interpreted identical 
evidence differently depending on the Frog’s prior beliefs about the 
location: children were more likely to choose the Old Location in the 
OL/SS condition (73%) than they were to choose the New Location in 
the NL/SS condition (13%; Fisher’s exact, p < .001).

As a further test of the hypothesis that children’s judgments on 
behalf of the Frog reflect an expectation of rational learning, rather 
than any alternative model (Table 1) we can directly compare the 
Rational Learning model with alternative models using a Bayes factor 
analyses (see Gelman et al., 2013). As is clear in Table 2 and Figure 4, 
the Rational Learning Model outperforms all of the alternative models 
in predicting the data. See Appendix S1 for details.

Finally, we looked at whether the ability to make the rational infer-
ence on behalf of the Frog changed between four-and-a-half and six 
years. We coded children’s responses as a ‘1’ if they responded with 
the Old Location in the Old Location/Random Sampling, Old Location/
Selective Sampling, and New Location/Selective Sampling conditions 
and with the New Location in the New Location/Random Sampling 
conditions and a ‘0’ if they responded otherwise. The logistic regres-
sion was marginally significant, suggesting a trend for older children 
to be more likely to expect others to rationally update their beliefs, 
β = 0.043(.024), z = 1.791, p = .073. See Figure 5.

4  | DISCUSSION

The results of the current study suggest that young children not only 
expect agents to act rationally with respect to their goals (Gergely & 
Csibra, 2003), they expect other agents to learn rationally from data. 
To make inferences on behalf of another agent, children needed 
to integrate the agent’s prior beliefs with the evidence the agent 
observed and the way the evidence was sampled. Children were 
inclined to believe that the Frog would change his mind only when 
there was strong evidence against the Frog’s prior belief (i.e., in the 
New Location/Random Sampling conditions). Children did not expect 

F IGURE  5 Children’s responses were coded as 1 if they were 
consistent with the expectation of rational learning and 0 otherwise. 
There was a non-significant trend for children’s performance to 
improve with age

Logistic Regression: β = 0.043(.024), z = 1.791, p = .073
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the Frog to change his mind when the evidence was consistent with 
his prior beliefs (Old Location/Random Sampling; New Location/
Selective Sampling), or when the evidence may have conflicted with 
the Frog’s prior beliefs but was weak and thus provided little ground 
for belief revision (Old Location/Selective Sampling).

Although even the youngest children in our sample were able to 
draw inferences about how a third party would update his beliefs from 
data, this study provides suggestive evidence that this ability might 
increase with age. Future research might look both at how children’s 
ability to draw inferences about others’ learning changes over develop-
ment and investigate the origins of this sensitivity earlier in childhood. 
A basic understanding of how evidence affects others’ beliefs (e.g., the 
understanding that seeing leads to knowing; Onishi & Baillargeon, 2005; 
Pratt & Bryant 1990; Senju, Southgate, Snape, Leonard, & Csibra, 2011) 
emerges very early. This knowledge, together with the ability to make 
predictions about rational action, opens up the possibility that in simpler 
contexts, even younger children might be able to draw inferences about 
how third parties might update their beliefs from data. It is also possi-
ble that children’s representations of the processes that underlie belief 
revision may support the emergence of broader abilities in interpretive 
theory of mind (Astington et al., 2002; Carey & Smith, 1993, Chandler 
& Carpendale, 1998; LaLonde & Chandler, 2002; Myers & Liben, 2012; 
Pillow & Mash, 1999; Ross et al., 2005; Ruffman et al., 1993); future 
research might investigate the relationship between understanding that 
evidence conflicts with prior knowledge and understanding that evi-
dence can be ambiguous depending on prior knowledge.

As discussed, children might have made a wide range of other 
inferences. In particular, they might have assumed that the Frog’s 
beliefs would mirror their own; they might have recognized that the 
Frog’s beliefs depended on epistemic access to the location of the box 
but failed to recognize that the Frog might update his beliefs based on 
inferential evidence, or they might have expected the Frog to attend 
to the sampled evidence but not have expected the Frog to integrate 
this evidence with his prior beliefs. Yet, children in this study were able 
to make predictions about what the Frog would think about the loca-
tion of the Duck box given the evidence, even though they themselves 
always knew the true location of the Duck box. Moreover, children 
were able to draw different inferences depending on the ambiguity of 
the evidence, showing different patterns of responding in the Random 
and Selective Sampling conditions. This suggests that children can 
draw inferences that are sensitive both to the distinction between 
their own and others’ prior knowledge, and to the strength of the 
data that others observe. We believe this finding is broadly consis-
tent with an emerging body of literature suggesting that children make 
relatively nuanced decisions about when and what to learn from oth-
ers (Bonawitz et al., 2011; Corriveau, Fusaro, & Harris, 2009; Gweon, 
Pelton, Konopka, & Schulz, 2014; Jaswal, 2010; Jaswal, Croft, Setia, & 
Cole, 2010; Koenig, Clement, & Harris, 2004; Koenig & Harris, 2005; 
Stiller, Goodman, & Frank, 2015). Our study extends the literature by 
suggesting that children also make relatively nuanced decisions about 
how and when children will expect others to learn.

The current study, however, does not indicate how broadly 
this ability extends, nor does it suggest the conditions under which 

children might fail to expect others to rationally update their beliefs 
from data. Here we suggest an account of how children might make 
normative judgments on behalf of third parties; future research might 
test the limitations of this account. Also, as discussed, the current 
study was motivated in part by predictions from an ideal observer 
model of rational inference. The results are broadly consistent with 
that account. However, providing a rigorous test of the quantitative 
predictions of the rational inference model and alternative accounts 
remains an important direction for future work.

As adults, we expect other agents to be rational actors not only in 
terms of the paths they take towards their goals, but also in terms of 
how they reason about evidence. Here we find that children’s develop-
ing theory of mind supports the same kinds of inferences. By 4½ years, 
children are able to integrate others’ prior knowledge and observed 
evidence to support predictions about when others will retain their 
beliefs and when they will change their minds.
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NOTES
1	 Information on the children’s gender was available only for 81% of the chil-
dren; the reported percentage reflects this sub-sample.

2	Note that although ages did not differ significantly across conditions, the 
mean age of children in the NL/RS_5 condition was 69 months, compared 
to 65 months for children in the NL/RS_3 condition. We are grateful to an 
anonymous reviewer for pointing out the possibility that this age difference 
may have contributed to children’s stronger inferences in the NL/RS_5 
condition.
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APPENDIX 

Computational Model

To help clarify our proposal and specify what counts as ‘rational in-
ference’ in these contexts, we developed a computational model that 
provides quantitative predictions for each experimental condition. 
The model specifies how a rational agent would behave when pre-
sented with the same task that we gave our participants. Although 
many studies have used Bayesian models to assess children’s ability 
to update their own prior beliefs from data (see Gopnik & Wellman, 
2012; Schulz, 2012; and Tenenbaum et al., 2011, for reviews) to our 
knowledge, this is the first attempt to consider children’s ability to 
predict when another agent will (or will not) change his mind by con-
sidering both that agent’s access to the data and his prior beliefs. 
Finally, note that in suggesting that children’s rational inferences on 
behalf of a third party can be captured by a Bayesian inference 
model, we do not mean to suggest that children have conscious, 
meta-cognitive access to these computations; rather, we suggest 
that such sophisticated computations may underlie the many im-
plicit, rapid, accurate judgments that support everyday social cogni-
tion. Figure 4 in the Main Text displays the predictions of our model 
for each of the candidate hypotheses of Table 1 in the Main Text.

The model is specified at two levels. First, we built a model of the 
Frog as a rational learner, given the information that he has available 
to him. Then, we modeled children’s rational inferences about the 
Frog. Thus two levels of rational inference are represented: the Frog’s 
beliefs about the location of the box, and the child’s beliefs about the 
Frog’s beliefs.

We adopt a Bayesian framework for modeling both these levels of 
rational inference. Bayesian inference models a learning event as an 
interaction of two factors: the agent’s prior beliefs about a hypothesis, 
before seeing new data: p(h), and the probability that the hypothesis is 
true given the newly observed data, the likelihood p(D | h). These com-
bine to yield the agent’s updated posterior belief p(h | D). Given new 
data bearing on a hypothesis, Bayes’ rule specifies how a rational 
agent should update her beliefs as:

We now turn to the model of the Frog’s inference, from the per-
spective of an ideal observer (which we can consider the child as 
approximating). On each experimental trial, the experimenter draws 
ducks from the Duck box, either randomly or selectively, and the 
boxes may or may not have been switched. At that point, both the 
child and the Frog know whether the sample is drawn randomly or 
selectively but only the child knows whether the boxes have been 
switched. However, the Frog has some prior belief pswitch about 
whether the boxes were switched in his absence (given the demon-
stration that they can be switched), which is equivalent to having a 
prior belief about which box the ducks are being drawn from. We can 
specify these as p(hduck) = pswitch for the Duck box and 
p(hball) = 1 − pswitch for the Ball box. The Frog must integrate this 

prior belief with his observation of three (or five) ducks being drawn 
from the box. Under random sampling, the probability of drawing n 
ducks and zero balls, with replacement,1 from the duck box is 
hduck=

(
45

60

)n

=

(
3

4

)n

; similarly the probability of drawing n ducks from 
the ball box is hball=

(
1

4

)n

 (these quantities specify the likelihood of 
the data given each hypothesis). Under selective sampling, the experi-
menter explicitly reached into the box to pull out a duck and thus the 
probability is 1 from each box. The posterior beliefs p(hduck | D) and 
p(hball | D) are then given by Bayes’ theorem above:

in the case of random sampling, and

in the case of selective sampling.
Thus we have a posterior distribution over the two hypotheses, 

where the posterior probability that the sample is drawn from the 
Duck box increases as the number of randomly sampled ducks 
increases, and remains equal to the prior under selective sampling. This 
reflects our intuition that the evidence is stronger with each new ran-
domly sampled duck and unchanged with each selectively sampled 
duck.
Having specified a rational model of the Frog’s inference, we now 

describe our model of the experimental participants. We propose 
that children can approximately simulate the above inference, and 
when asked to say where they think the Frog thinks the duck box is, 
they report the output of this computation, subject to two approxi-
mations. As is standard practice when modeling behavioral responses 
(Denison, Bonawitz, Gopnik, & Griffiths, 2013; Gweon et al., 2010; 
Xu & Tenenbaum, 2007), we assume that children probability match; 
that is, the frequency with which they select responses is propor-
tional to the posterior probability of each hypothesis. In a population 
of participants, this rule gives a distribution of responses that mimics 
the distribution of posterior beliefs, and it is an efficient scheme for 
approximating probabilistic inference (Vul, Goodman, Griffiths, & 
Tenenbaum, 2014). We also consider the possibility that on each 
trial, there is a nonzero probability that children may have been 
inattentive or confused. We therefore include a noisy response 
parameter, perror, estimating the probability that a participant gives a 
box choice selected uniformly at random, instead of the response 
predicted by the model. Thus our model at this point has two param-
eters: the Frog’s prior belief, p_switch, about whether the boxes were 
switched, and the noisy response parameter, p_error. To estimate 
pswitch, we used the ratio of children’s responses on the initial belief 
question:

We have no analogous way to derive a plausible independent and 
numerically precise estimate of perror. For the results displayed in 
Figure 4, we set perror = .25; as children had to pass two inclusion 
checks, at most 25% of included children could have been answering at 
chance.

p(h|D)∝p(D|h)p(h)

(1)p(hduck|D)∝pswitch×

(
3

4

)n

and p(hball|D)∝pswitch×

(
1

4

)

(2)p(hduck|D)∝pswitch and p(hball|D)∝pswitch

pswitch=
28

178
= .157
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While we have described our model mathematically, it is possible to 
implement this model implicitly by simple sampling operations, with-
out making any explicit statistical calculations. We describe one such 
implementation written in the probabilistic programming language 
Church (Goodman, Mansinghka, Roy, Bonawitz, & Tenenbaum, 2008; 
Goodman & Tenenbaum, 2014).

We implemented the Rational Learning model, and all of the alterna-
tive models presented in Table 1 in the probabilistic programming lan-
guage Church (Goodman et al., 2008; Goodman & Tenenbaum, 2014). 
We used the webchurch implementation, available at https://github.
com/probmods/webchurch or interactively at https://probmods.org/
play-space.html. To evaluate the following Church code, copy and 
paste the code text into the environment available in the latter link.

The following code block is sufficient to reproduce all of the model 
predictions described here; to obtain the predictions for individual 
conditions given a specified model, modify the variables num-draws, 
actual-switch, and sampling-manner as described in the text. To obtain 
the predictions of different (alternative) models, the predictions of the 
different (alternative) models (a) - (f), modify the value of the variable 
which-model to the appropriate ‘a-’f in the code listed in Data S1.

APPENDIX NOTE
1	While the experiment used sampling without replacement, our model 

used sampling with replacement because the analysis is conceptually 
simpler and for large populations (i.e., the 60 objects in the box here) 
the difference between the distributions underlying sampling with and 
without replacement is negligible.
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Young children use others’ prior beliefs and data to predict when third parties will retain their beliefs and when they will change their minds.




