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Abstract

We used a new method to assess how people can infer unobserved causal structure from patterns
of observed events. Participants were taught to draw causal graphs, and then shown a pattern of asso-
ciations and interventions on a novel causal system. Given minimal training and no feedback, partici-
pants in Experiment 1 used causal graph notation to spontaneously draw structures containing one
observed cause, one unobserved common cause, and two unobserved independent causes, depending
on the pattern of associations and interventions they saw. We replicated these findings with
less-informative training (Experiments 2 and 3) and a new apparatus (Experiment 3) to show that
the pattern of data leads to hidden causal inferences across a range of prior constraints on causal
knowledge.
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1. Introduction

Our everyday theories rely on our ability to reason about unobserved causes (Gelman &
Wellman, 1991; Gopnik & Meltzoff, 1997; Murphy & Medin, 1985). How might we learn
about unobserved causes from observed events? We can learn about unobserved causes
from descriptions of causal mechanisms (Ahn, Kalish, Medin, & Gelman, 1995) or by
appeal to familiar causal principles (Gelman & Wellman, 1991; Schulz & Sommerville,
2006). However, in many cases such knowledge is incomplete or unavailable. For example,
consider coming across an interesting but unfamiliar toy—a box with two sticks poking out
of its surface. The sticks move up and down when operated by a hidden mechanism inside
the box. Short of taking apart the toy, how might we learn what causes their movement?
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Recent research has shown that we can use statistical evidence, in particular information
about both associations and interventions, to learn about unfamiliar causal relations among
observed events (Gopnik, Sobel, Schulz, & Glymour, 2001; Gopnik et al., 2004; Lagnado &
Sloman, 2004; Schulz, Gopnik, & Glymour, 2007; Steyvers, Tenenbaum, Wagenmakers, &
Blum, 2003; Waldmann & Hagmayer, 2001). Could we also use such evidence to learn
about unobserved causes—such as the causal relations governing this toy—as well?

The causal Bayes net formalism (Pearl, 2000; Spirtes, Glymour, & Scheines, 1993) pro-
vides a computational account of the conditions under which statistical evidence can lead to
learning about hidden causes. The formalism defines a set of assumptions linking causal
structure (directed graphs that encode causal relations) to data (conditional probabilities).
Integrated into this framework is a formal notion of a causal intervention—a manipulation
originating outside (exogenous to) the causal system that changes a variable’s value in some
way. Intervening on a variable temporarily eliminates the influence of that variable’s parent
causes within the system, as the value of the variable is completely determined by the inter-
vention. Thus, in the causal Bayes net formalism, evidence from associations (i.e., correla-
tions) is distinct from evidence from interventions and both are combined in a common
representational framework.

Critically, this formalism is unique among psychological theories of causal inference in
outlining conditions under which we can learn about unobserved causal variables and distin-
guish among structures containing such variables without including additional assumptions
(Cheng, 1997; Shanks & Dickinson, 1987). That is not to say that other causal informa-
tion—such as mechanism knowledge—cannot be incorporated. Indeed, knowledge interacts
with statistical evidence to constrain the types of causal inferences that can be made in any
given domain (Griffiths, Baraff, & Tenenbaum, 2004; Kushnir & Gopnik, 2007; Lagnado &
Sloman, 2006; Schulz, Bonawitz, & Griffiths, 2007; Wolff, 2007). However, there is at least
one scenario in which the assumptions of the formalism lead to inferences about unobserved
causal structure even when no domain-specific knowledge is available. It is this pattern of
associations and interventions that we consider in the following set of experiments.

To illustrate, we return to our example of the toy. Suppose that when the toy is activated,
the two sticks usually move up and down together, and thus are associated. Then suppose
intervening on the first stick by pulling it from above does not influence the movement of
the second stick, and intervening on the second stick does not influence the movement of
the first. Formally, intervening on each variable did not change the probability of the other
variable. Thus, we rule out the possibility that either stick is causally responsible for the
movement of the other. What possibility is left? The causal structure most consistent with
the data, and the formal assumptions, is that the sticks have a hidden common cause (see
Gopnik et al., 2004, for details). Therefore, the formalism predicts that we should infer the
existence of a common cause, even though we do not observe it directly.

Can people learn about hidden common causes in this scenario? Previous studies on
causal learning have been almost entirely restricted to relations between observed causes
(e.g., Gopnik et al., 2001, 2004; Lagnado & Sloman, 2004, 2006; Steyvers et al., 2003).
The technique has been to present participants with data and ask them to choose among
different possible causal structures relating observed variables, with explicit instructions that
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there are no unobserved causes. One study (Kushnir, Gopnik, Schulz, & Danks, 2003) used
this technique to show that people can choose the correct causal structure containing unob-
served causes. However, we do not yet know whether people can posit hidden causal struc-
ture spontaneously, without being given a set of choices.

The current study presents a new method designed to examine whether people can make
spontaneous inferences about unobserved causal structure independently of specific knowl-
edge of causal mechanisms. Similar to previous studies (Lagnado & Sloman, 2006; Sobel &
Kushnir, 2006), we showed participants how to draw arrows between variables to indicate
causal relations. However, whereas in previous research variables were prespecified, here
we purposefully left variable selection up to participants. Importantly, participants were told
they could include hidden causal variables when necessary.

After a brief training on drawing causal graphs, we showed participants a novel causal
system (a toy) with two observed variables. Then they saw four different patterns of evi-
dence involving associations and interventions. Each pattern was consistent with a different
causal structure connecting the observed variables, some of which necessarily included
hidden causal variables. We hypothesized that, consistent with the predictions of the causal
Bayes net formalism, participants would spontaneously infer hidden common causes when
they observed variables that are generally associated but are independent under intervention.
Moreover, we predicted that participants could make inferences about hidden causal struc-
ture without prior constraints on the possible causal structures they could choose to
draw (Experiment 2) and independently of their knowledge of particular physical causal
mechanisms (Experiment 3).

2. Experiment 1

Experiment 1 introduces a new method—drawing causal graphs—to test people’s infer-
ences about hidden causal structure. We provided no feedback to participants about their
answers at any time during the training or test conditions. The four conditions in this experi-
ment all involved a ‘‘stick-ball machine’’ and were based on those in Kushnir et al. (2003)
and are described in detail below.

2.1. Method

2.1.1. Participants
Fourty-six undergraduates were recruited from the research participation pool at a large

university. They were tested in four roughly equal groups (11–12 participants per group).

2.1.2. Materials
The stick-ball machine (Fig. 1) was a 3¢ · 1¢ · 1¢ wooden box with two holes at the top

and an open back hidden from participants. Two balls attached to sticks were placed in
the holes. In association trials, the sticks were moved up and down (either together or
separately) from behind—thus participants observed associations between the two sticks’
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movements. These associations might have been caused by a mechanism that involved one
stick moving the other, or involved two sticks being moved independently, or involved a
common cause moving both sticks together—prior mechanism knowledge could not distin-
guish these possibilities. In intervention trials, participants saw an experimenter visibly pull
one of the sticks up and observed the effect on the other stick.

2.1.3. Procedure
2.1.3.1. Graph training phase: We trained participants to draw causal graphs as containing
circles, representing ‘‘things,’’ and arrows, representing causal direction. Participants prac-
ticed with five examples in which large colored blocks hit each other domino-style: (1) dom-
ino A knocked over domino B, (2) domino B knocked over domino A, (3) domino C
knocked over dominoes A and B, and (4) domino C knocked over domino A and domino D
knocked over domino B. In a final example (5), one block was on the table and fell sponta-
neously. Participants were told that if they did not see the cause of an event, they could use
an ‘‘h’’ to refer to a hidden cause. No feedback of any sort was given.

Test phase. One experimenter narrated the task and performed interventions while the
other operated the machine. Participants were given the task to draw the mechanism that
made the stick-balls move in each condition, and they were told that it could change from
condition to condition. No training on interventions—verbal or visual—was included.

Each condition contained two new stick-balls of different colors. Familiarization was
always first, followed by the test conditions counterbalanced (by group of participants) in a
Latin square design. The following descriptions of the conditions are summaries. In the
actual experiment, the types of movement (interventions and associations) within each con-
dition were intermixed. The interventions were counterbalanced by side so that no stick
(right or left) was always intervened on first.

2.1.3.2. Familiarization: This established that the causal relations were probabilistic rather
than deterministic. Participants were given the causal structure: Stick A caused stick B to
move. This was then demonstrated by showing both sticks moving together four times and
stick A moving alone twice, with no interventions. Griffiths et al. (2004) previously showed

Fig. 1. A drawing of the stick-ball machine apparatus from Experiments 1 and 2. The sticks could be connected
and moved by a common beam (shown) or could be disconnected from the beam and moved separately (for the
conditions requiring independent movement). Note that participants were not given any detailed description of
the inner workings of the apparatus.

T. Kushnir et al. ⁄Cognitive Science 34 (2010) 151



that this pattern of movements on the stick-ball machine leads participants to expect causes
to be 75% effective.

1. One observed-cause condition. The narrator intervened on stick A six times. Four of
those times, both sticks A and B moved. The remaining two times stick A moved and
stick B did not move. Thus, A and B were highly correlated due to the intervention
on A. Learners should conclude that A causes B.

2. Common unobserved-cause condition. In association trials the stick-balls moved
together four times. The narrator intervened on stick A twice and each time stick B
did not move. The narrator intervened on stick B twice and each time stick A did not
move. So A and B were strongly correlated in the association trials, but independent
under interventions. Learners should therefore infer the presence of a hidden common
cause of A and B.

3. Independent unobserved-causes condition. In association trials, the stick-balls moved
separately twice and together once. The narrator intervened on stick A twice and each
time stick B did not move. The narrator intervened on stick B twice and each time
stick A did not move. Note that the interventions were the same as in the common
unobserved-cause condition. However, the correlation between A and B in the associ-
ation trials was weak. Learners should conclude that there are independent causes for
A and B.

4. Pointing control condition. In association trials, the stick-balls moved together four
times. The narrator pointed at stick A twice as it moved alone. The narrator pointed
at stick B twice as it moved alone. Pointing began slightly after the movement (to
rule it out as a cause). This condition was included to rule out two potential alterna-
tive hypotheses for performance in the hidden cause condition: associative learning
and salience. First, the overall movements of the stick-balls were identical to the
common unobserved-cause condition; in each case the movements occurred together
50% of the time and separately 50% of the time. Second, pointing was included to
ensure that participants understood that only the appropriate pulling gesture could be
treated as an exogenous intervention; the mere presence (and salience) of a hand ges-
ture should not be sufficient. We predict that, when the independent movements of
the sticks were accompanied by pointing (rather than pulling) participants should be
uncertain about the underlying causal structure.

After each trial participants were told to draw a graph that corresponded to the causal
structure.

Coding. Responses were coded as either (1) one cause, (2) hidden common cause, (3) hid-
den independent causes, or (4) other. Eighty percent of the responses were coded as 1, 2, or
3. The additional 20% were coded as ‘‘other’’ because they either contained multiple struc-
tures (either side by side or superimposed on the same graph, 6%), had a bidirected edge
(could have been interpreted as cyclic, conjunctive, or as containing a common cause,
6.5%), or were otherwise unclear (7.6%). A small number of participants1 that referred to a
person (or hand) causing the machine’s activation, but made responses consistent with
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graphs of types 1, 2, or 3 were coded as falling into the appropriate response category. An
additional check was made to make sure that the ‘‘one-cause’’ response in the one-cause
trial was in the appropriate direction, which was true for all cases. Coding was performed
by the first author and by an independent coder who was blind to the research question and
trial order. Raters were in agreement on 98% of the responses. Importantly, raters were in
100% agreement about hidden common-cause responses.

2.2. Results and discussion

All of the participants drew the correct causal graphs in the training phase. Moreover, in
the test phase, the responses (described below) were consistent with those obtained from
asking participants to choose among a set of given hidden causal structures (Kushnir et al.,
2003). We therefore believe this to be a promising method for assessing causal inferences in
future research.

Table 1 shows the percentage of participants drawing each type of graph in each condi-
tion. The majority response in each of the first three conditions was the most likely graph
given the pattern of associations and interventions. In the one observed-cause condition,
71.7% drew the correct one-case structure.2 In the common unobserved-cause condition,
58.7% drew a hidden common-cause graph. In the independent unobserved-causes condi-
tion, 52.2% drew the independent-causes graph.

Importantly, within-subjects comparisons showed that individual participants drew the
appropriate graph in each condition. All comparisons were made using McNemar’s tests
(two-tailed binomial tests on the change proportions). All tests were significant at an alpha
level of .001 unless otherwise noted. More participants drew the one-cause graph in condi-
tion 1 but not condition 2 (31 vs. 0) or condition 3 (33 vs. 0). Moreover, more participants
drew a hidden common-cause graph in condition 2 but not condition 1 (24 vs. 0) or condi-

Table 1
Percentage of responses in each of the test conditions in Experiment 1

Graph Drawn

Condition

One Observed Common Unobserved Independent Unobserved Pointing Control

71.7a 4.3 0 6.5

6.5 58.7 28.3 39.1

8.7 17.4 52.2 26.1

Other 13 19.6 19.6 28.3

Note. The modal response is indicated in bold.
aThis was the correct one-cause answer only; no participant drew this graph in the other direction.

T. Kushnir et al. ⁄Cognitive Science 34 (2010) 153



tion 3 (16 vs. 2). Finally, more participants drew the independent-causes graph in condition
3 but not condition 1 (20 vs. 0) or condition 2 (16 vs. 0).

In the pointing control (condition 4), we predicted that participants should be uncertain
about the correct structure, and the results confirm this prediction. Participants were unlikely
to choose the one-cause graph (6.5%); but there were no differences between the common-
cause and independent-causes responses, v2(1, N = 30) = 1.2, ns. Importantly, McNemar’s
tests showed that participants made significantly more hidden common-cause responses in
condition 2 (12 vs. 3, p < .05) than in this condition and made significantly more indepen-
dent-causes responses in condition 3 than in this condition (12 vs. 0).

3. Experiment 2

Given minimal training and no feedback, participants in Experiment 1 used causal graph
notation to spontaneously draw structures containing one unobserved common cause, two
unobserved independent causes, or one observed cause depending on the pattern of associa-
tions and interventions. However, the training included observed causal structures corre-
sponding to exactly the hidden structures in the test condition—the participants saw
common-cause and independent-cause structures in both cases. This may have potentially
biased the participants to favor those responses. In Experiment 2, we trained participants on
different graphs to eliminate this possibility.

3.1. Method

3.1.1. Participants
Participants were 44 undergraduates recruited from the research participation pool at a

large research university. They were tested in four equal groups.

3.1.2. Materials
The materials were the same as in Experiment 1.

3.1.3. Procedure
The graph training was identical to the training in Experiment 1, except that scenarios 3

and 4 (common cause and independent causes) were replaced by (3) Common effect: domi-
noes A and B knocked over domino C, and (4) Chain: domino C knocked over domino A
and domino A knocked over domino B.

Participants then saw the same familiarization condition and four test conditions, counter-
balanced as in Experiment 1.

Graphs drawn were coded by the criteria used in Experiment 1. There were no errors in
the training phase. Eighty-six percent of the graphs in the test phase were coded as 1, 2, or
3. All but four of the ‘‘one-cause’’ response in the once-cause trial were in the appropriate
direction. Those four were recoded as ‘‘other’’ for the remainder of the analysis. The first
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author and a blind coder were in agreement on 94% of the responses. Both coders were in
97% agreement about hidden common-cause responses.

3.2. Results and discussion

The results replicate those of Experiment 1; participants drew the appropriate graphs
without being explicitly trained on the structures beforehand. Table 2 shows the percentage
of participants drawing each type of graph in each condition. In the one observed-cause con-
dition, 88.6% drew the correct one-cause graph. In the common unobserved-cause condi-
tion, 47.7% drew a hidden common-cause graph. In the independent unobserved-causes
condition, 50% drew an independent-causes structure.

As in Experiment 1, individual participants drew the appropriate graphs in each
condition. All within-subject comparisons were analyzed by one-tailed McNemar’s
tests based on a hypothesized replication of the direction of effect. Results were sig-
nificant at an alpha level of .001 unless otherwise noted. More participants drew the
one-cause graph in condition 1 but not condition 2 (37 vs. 2) or condition 3 (37 vs.
1). Moreover, more participants drew a hidden common-cause graph in condition 2
but not condition 1 (21 vs. 0) or condition 3 (11 vs. 3; p < .05). Finally, more partic-
ipants drew the independent-causes graph in condition 3 but not condition 1 (22 vs.
0) or condition 2 (15 vs. 4; p < .01).

In the pointing control, roughly equal numbers of participants drew graphs 1, 2, and 3,
v2(2, N = 34) = 0.77, ns. Critically, comparisons of the hidden causal structures between
condition 4 and conditions 2 and 3 showed the same effect as in Experiment 1—more partic-
ipants drew the hidden cause graph in condition 2 (11 vs. 3; p < .05), and more drew the
independent cause graph in condition 3 (12 vs. 2, p < .01) than in the pointing control. Thus,
participants inferred the correct structure when the pattern of data included the appropriate

Table 2
Percentage of responses in each of the test conditions in Experiment 2

Graph Drawn

Condition

One Observed Common Unobserved Independent Unobserved Pointing Control

88.6a 9.1 6.8 20.5

0 47.7 29.5 29.5

0 25.0 50.0 27.3

Other 11.4b 18.2 13.6 22.7

Notes. The modal response is indicated in bold.
aThis was the correct one-cause answer only.
bThis included the one-cause response drawn in the wrong direction.
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associations and interventions, although they were not given any explicit training to draw
either common-cause graphs or independent-causes graphs.

4. Experiment 3

The results of Experiment 2 suggest that participants not only inferred the correct struc-
ture from the data but were also able to generate the hypothesis space of structures them-
selves. However, it is quite possible that the physical constraints of the stick-ball machine
itself were driving participants’ inferences about the possible causal structures. Indeed,
Griffiths et al. (2004) showed computationally how a simple physical theory can constrain
the hypothesis space of causal structures governing the operation of the stick-ball machine.
It is not known whether the pattern of evidence we present here can lead to inferences about
hidden causal structure across different naive physical theories.

To examine this, we replicated Experiment 2 using a different causal mechanism—one
that was electronic rather than mechanical, and therefore governed by different physical
constraints. Specifically, our intuitions about electronic mechanisms are that they are more
complex than mechanical ones (Koslowski, 1996). A more complex physical theory would
lead to a larger hypothesis space of causal structures connecting the observed variables
(Griffiths et al., 2004). Nonetheless, we predict that the general pattern of results would
replicate with this new device.

4.1. Method

4.1.1. Participants
Participants were 54 undergraduates at a large university. Eleven additional participants

were excluded because they drew at least one incorrect graph in the training phase or famil-
iarization condition (when the answer was known). Participants were tested in 11 small
groups.

4.1.2. Materials
The apparatus consisted of two electronic devices: 5¢¢ · 7¢¢ · 3¢¢ boxes with orange pan-

els on top (Fig. 2). When activated, the devices’ orange panels glowed and they played a
short melody. In association trials, one or both of the devices were activated by hidden
switches controlled by a confederate. In intervention trials, the experimenter activated one
device by pressing on its orange panel, and the other device activated simultaneously or not
at all.

4.1.3. Procedure
Participants saw the same graph training, familiarization condition, and four test condi-

tions as in Experiment 2, counterbalanced in one of four orderings as before.
Coding criteria followed the previous experiments. Sixty-nine percent of graphs were

coded as 1, 2, or 3. The responses included a small number of graphs (5%), not present in

156 T. Kushnir et al. ⁄Cognitive Science 34 (2010)



Experiments 1 and 2, depicting independence between observed variables without hidden
causes. These were also coded as response type 3. Interestingly, these graphs bear a strong
physical resemblance to the way the toy actually looked (two toys, no wires or other connec-
tions between them). The statistical comparisons below are equivalent with or without these
responses included. Coding was performed by the third author and a hypothesis and condi-
tion blind coder. Agreement was 94.2%. Coders were in 93.8% agreement about hidden
common-cause responses.

4.2. Results and discussion

Overall, the results (shown in Table 3) show the same pattern as in Experiments 1 and 2.
In the common unobserved-cause condition, 48.1% of participants drew the correct hidden
common-cause graph. In the independent unobserved-causes condition, 33.3% drew the cor-
rect independent-causes graph. In the one observed-cause condition, 63% drew the correct
one-cause graph.

----------
Off   On 

--------
Off   On 

Fig. 2. A drawing of the electrical devices used in Experiment 3 (switches were hidden from view).

Table 3
Percentage of responses in each of the test conditions in Experiment 3

Graph Drawn

Condition

One Observed Common Unobserved Independent Unobserved Pointing Control

63a 13 11.1 25.9

7.4 48.1 24.1 24.1

5.6 7.4 33.3 13

Other 24 31.5 31.5 37

Note. The modal response is indicated in bold.
aThis was the correct one-cause answer only; no participant drew this graph in the other direction.
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As before, individual participants drew the appropriate graphs in each condition. All
comparisons in this section were made using McNemar’s tests (two-tailed) and were signifi-
cant at an alpha level of .001 unless otherwise noted. Participants were more likely to draw
the hidden common-cause graph in condition 1 and not condition 2 than vice-versa. A simi-
lar pattern held for in condition 2 (15 vs. 2, p < .01) and condition 3 (23 vs. 1). Similarly,
they were more likely to draw the hidden independent-causes graph in condition 2 than in
condition 1 (15 vs. 1, p = .001) or condition 3 (16 vs. 1). They were also more likely to draw
the one-cause graph in condition 3 only than in condition 1 (28 vs. 1) or condition 2 (28 vs.
0).

In the pointing control, the distribution was uniform across all four response categories,
v2(3, N = 54) = 3.04, ns, replicating the findings from Experiment 2. Once again, signifi-
cantly more participants drew the one-cause graph in condition 1 (27 vs. 7), hidden-cause
graph in condition 2 (15 vs. 2, p < .01), and independent-causes graph in condition 3 (13 vs.
2, p < .01) than in the pointing control condition.

As expected, in Experiment 3, there were a slightly larger number of responses (31%)
coded as ‘‘other’’ (as compared to only 16% in Experiment 2 and only 20% in Experiment
1). This is consistent with our prediction that the electronic device elicits a larger hypothesis
space of causal structures. Despite this difference, the majority of participants used the
evidence to spontaneously generate the appropriate structure in each condition.

5. General discussion

This study demonstrates that, given minimal training and no prior constraints on
responses, people can spontaneously draw causal graphs containing hidden variables. In all
three experiments, participants drew the appropriate graphs containing hidden common
causes when they observed that two events were associated but the association was not pre-
served under interventions. In addition, participants correctly inferred independent causes
when they observed the same pattern of interventions without an observed association
(condition 3), and they were appropriately agnostic about the causal structure underlying the
same pattern of movements and associations without interventions (condition 4).

This study also shows that people can infer hidden common causes from the same pattern
of evidence across different causal mechanisms. Previous research has shown that human
causal reasoning relies heavily on knowledge of mechanisms (Ahn et al., 1995; Koslowski,
1996), but what if mechanisms are unknown? There is considerable evidence that both
adults and children have relatively shallow knowledge of causal mechanisms (Keil, 2003).
One way to deepen our understanding of new mechanisms may be to observe patterns of
associations and interventions similar to those in this study.

The Causal Bayes net formalism defines conditions under which hidden causes can be
discovered independently of domain-specific knowledge. Human causal learning, however,
involves the interaction of domain-general and domain-specific causal knowledge, and
recent studies have begun to examine the scope of this interaction (see Tenenbaum & Grif-
fiths, 2007). Moreover, other domain-general assumptions likely play a role in hidden causal
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discovery. There is evidence that adults and young children assume causal determinism, that
is, they believe that probabilistic relationships between causes and effects can be explained
by appealing to unobserved causes (Luhmann & Ahn, 2003; Schulz & Sommerville, 2006).
Similarly, adults and children seem to assume that there are unobserved mechanisms that
transmit causal power from causes to their effects (Ahn et al., 1995; Shultz, 1982). A combi-
nation of these processes may best explain how we are able to infer complex unobserved
causal structure from observed events. In turn, this kind of learning may play an important
role in the development of our intuitive theories.

Notes

1. Seven percent across all three studies.
2. Griffiths et al. (2004) computationally showed that expected response distributions in

this study are probabilistic rather than all-or-none and that alternative responses reflect
individual differences in the willingness to entertain other plausible (but less probable)
hypotheses. Our data are consistent with this interpretation.
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