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Abstract

The idea of the child as an active learner is one of Piaget's enduring legacies. In this
chapter, | discuss the ways in which contemporary computational models of learning
do, and do not, address learning as an active, child-driven process. In Part 1, I discuss
the problem of search and exploration. In Part 2, | discuss the (harder and more
interesting) problem of hypothesis generation. | conclude by proposing some possible
new directions for research.

Constructivism is a clunky word. Arguably, however, only such a ponderous
term could stand up to those venerable pillars of epistemology: nativism and
empiricism. In contrast to both, Piaget insisted that learning was driven by
interactions between the child’s representations and her experience of the
environment. Today, we can express this insight with mathematical preci-
sion; prior hypotheses constrain our interpretation of evidence and affect
whether and how we revise our beliefs from evidence (see Tenenbaum,
Kemp, Griffiths, & Goodman, 2011, for exposition and review). In adding
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clarity and rigor to concepts like accommodation and assimilation,
computational models introduced rational analyses to constructivism and
motivated much of the enterprise to which this volume pays homage. A
decade of empirical support speaks to the success of this approach (Gopnik &
Wellman, 2012; Schulz, 2012). In this chapter, however, and mindful of the
mandate to reflect critically on “needed theoretical, technological, and
empirical advances,” I will focus on an idea that is critical to the construc-
tivist vision but largely missing from contemporary accounts of learning: the
idea of the child as an active learner.
Consider this passage, written in 1937:

Such construction is not the act of an a priori deduction, nor is it due to purely
empirical gropings. The sequence ... testifies much more strongly to progressive
comprehension than to haphazard achievements. If there is experimentation, the
experiments are directed.

Piaget, The Construction of Reality in the Child.

The excerpt refers to the development of the infants’ object concept.
Never mind the details (which are wrong; Baillargeon & Luo, 2002; Spelke,
1999; Spelke, Brinlinger, Macomber, & Jacobson, 1992). For my purposes,
Piaget’s central claim is not a less rigorous, less precise instantiation of the
Bayesian idea that prior knowledge and evidence interact. The central claim
is that the child actively seeks to understand the world.

What might active learning mean? It could mean what we sometimes
mean by “hands-on learning”: that children like to do things and that the
things they do can sometimes generate evidence that supports new infer-
ences. Such activities, however, presumably fall under the purview of
“empirical gropings.” Piaget’s claim is stronger. He suggests that the child
generates hypotheses about how the world works and that the child’s
actions—starting with literal manipulations of objects but ending in
“cognitive acts” ranging from mental rotation to thought experiments—are
systematic attempts to understand how the world works.

As someone who putatively works on exploration and active learning in
early childhood, I find it hard to overstate the degree to which this vision of
active learning is absent from current research on cognitive development
(my own included). Even my writing betrays this; I find myself repeatedly
opting for periphrastic locutions (“make inferences”; “distinguish
hypotheses”) over verbs that more clearly ascribe intentional activity to the
child: “thought,” “decided,” “wondered,” and “tried.” To the degree that
grammar is “the metaphysics of the people” (Nietzsche, 1882, 1974), I
would seem to be an agnostic about active learning.
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This grammatical timidity is due in part to the problematic nature of
making claims about children’s internal states. However, I think the phrasing
also accurately reflects the current state of our theories of learning. It is one
thing to talk about how learners draw rational inferences from data; it is
another to suggest that children actively work to construct new knowledge.
The latter commitment poses at least two problems that current accounts of
cognitive development elide.

First, accounts of cognitive development have focused primarily on prob-
lems of inductive inference. Principles of induction have implications for but do
not directly address problems equally critical to learning: problems of search,
exploration, or decision making. Thus, our current accounts of constructivism
tend to stop precisely where the active part of active learning begins.

The second and to my mind more fascinating problem (impatient readers
should skip directly to Problem Two) is that, we routinely generate new
ideas without having access to new data. With all due respect to the
innovative proposals currently in play, we still do not understand how
learners think of new ideas. The hard part of this problem goes beyond
a search problem. I think a precise formal solution to this problem is a ways
off but I will talk about what I think is missing from the current proposals
and suggest possible new directions for research.

S 1. PROBLEM 1: EXPLORING

Why do we explore? Intuitively, we explore either when we
encounter something surprising or when we encounter something (even
a perfectly ordinary something) that we cannot explain. Bayes’ law can
llustrate the common principle underlying these two seemingly quite
different motivational states.

Bayes’ law states that the learner’s belief in a hypothesis after observing
evidence, the posterior probability of the hypothesis, P(h|e), is proportional to
both to its likelihood, P(e|h), the probability that the hypothesis, if true,
would have generated the observed evidence, and its prior probability, P(h),
the probability that the hypothesis is generated by the learner’s background
theories. Formally: P(hle) o P(e|h)P(h).

If the posterior probability (the probability of the hypothesis given the
evidence) of two or more hypotheses is approximately equivalent (P(h1|e) =
P(h2|e)), the learner will be uncertain which hypothesis is true. This can occur
either if the prior probability favors one hypothesis and the likelihood another
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(P(e|h1) < P(e|h2) and P(h1) > P(h2)) or if the prior probability and the
likelihood of multiple hypothesis are equivalent (e.g. P(hl) = P(h2) and
P(e|h1) = P(e|h2)). The firstis a formalization of what it means for evidence to
be surprising; the second is a formalization of what it means for evidence to be
confounded. Thus Bayes’ law provides an intuitive account of why explora-
tion in the face of surprise and confounding derive from a common principle.

So far, so good, and numerous empirical studies attest to the fact that
children selectively explore when confronted either with theory-violating
evidence (Bonawitz, van Schijndel, Friel, & Schulz, 2012) or with evidence
that is confounded (Schulz & Bonawitz, 2007). Patently, however, both
children and adults can experience inductive uncertainty without engaging
in exploration. Understanding when and why children do or do not engage
in exploration will require understanding both how children decide when
exploration is valuable and how children know what exploratory actions to
take. These processes are not independent (e.g. the learner’s assessment of
the value of exploration depends on her assessment of the availability of
potentially informative actions). However, progress has been made on each
of these fronts across quite different disciplines, suggesting the possibility that
an integrated approach to understanding exploration could predict and
explain more of children’s behavior.

1.1. Knowing When to Explore

When children explore, there are other things they are not doing. Children
have to decide when the potential advantages of exploration exceed the costs.
A number of fields, including machine learning (Gittens, 1979; Kaebling,
1993; Kaelbling, Littman, & Moore, 1996; Kaelbling, Littman, & Cassandra,
1998; Tong & Koller, 2001), decision making (Sutton & Barto, 1998),
neuroscience (Daw, Niv, & Dayan, 2005; Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006; McClure, Daw, & Read Montague, 2003), and
ethology (Charnov, 1976, 2006; Krebs, Kacelnik, & Taylor, 1978; Stephens
& Krebs, 1996), have proposed resolutions to such exploration/exploitation
dilemmas. These accounts suggest search strategies that consider various
reward functions and constraints on the organism and maximize the expected
cost to benefit ratio of staying in a given state relative to transitioning to a new
one (predicting, for instance, that organisms should stay longer at a food patch
as the distance between patches increases; Charnov, 1976).

If applied to problems of learning in early childhood, comparable
approaches might help predict and explain children’s exploratory behavior
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beyond what can be explained by epistemic uncertainty alone. It seems
intuitive, for instance, that children will be more likely to explore in
contexts where there are just a few plausible hypotheses than when there are
many. However, formalizing even such simple intuitions requires inte-
grating problems of inductive inference with a consideration of the relative
value of exploratory actions (e.g. if the same action can eliminate a single
hypothesis from consideration across cases, the potential for information gain
is greater when hypotheses are fewer).

Typically, however, solutions to exploration/exploitation dilemmas
have been proposed, not for challenging learning problems but for cases
where the epistemic component is relatively straightforward. In particular,
optimal search processes have been developed to maximize rewards when
the distribution of rewards is uncertain but arbitrary (e.g. rewards distributed
among slot machines with different payofts (Daw et al., 2006; Gittins, 1989;
Strehl et al., 2006), decks of cards with different values (Bechara, Damasio,
Tranel, & Damasio, 1997; Sang, Todd, & Goldstone, 2011), or food patches
with different caloric and nutritional worth (Kacelnik & Bateson, 1996;
Stephens & Krebs, 1986)." Although the organism’s search may be affected
by rational considerations of expected costs and benefits, such search
processes nonetheless arguably remain closer to “empirical groping” than to
constructivism. The search process is not random but neither is it guided by
an abstract theory of the domain. Arbitrary distributions of rewards are
unlikely to lend themselves to “progressive comprehension.”

Recently, however, researchers in machine learning have begun to
consider how search might proceed in domains that support more structured
representations. Robots, for instance, may start with a map of the terrain and
search for efficient routes to a goal within the terrain (Leonard & Durrant-
Whyte, 1991). Researchers have also begun to address chicken-and-egg
problems of exploration: designing robots that can simultaneously use a map
to evaluate the expected utility of various state transitions and use the
information gained during exploration to revise the map (Durrant-Whyte &
Bailey, 2006; Thrun, Burgard, & Fox, 2005). Although these particular
approaches only solve these problems for finite two-dimensional spaces,
they ofter a hint as to how we might begin to formalize the idea of theory-
guided and theory-shaping exploration in higher dimensional spaces.

1 Of course, the actual distribution of calories across patches is not arbitrary; in the case of
food patches, it is more accurate to say that the foraging animal is presumably ignorant of
the biological and ecological factors that aftect the distribution of rewards.
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Such approaches would seem to lend themselves well to an under-
standing of the exploratory aspect of constructivism. If we can consider the
relative utility of competing courses of action in the context of hierarchical
representations of the domain being explored, we might be able to better
explain both when exploration is likely to occur and how the child’s
exploration is likely to transform the child’s knowledge. A full analysis of the
relative costs and benefits of different actions may be intractable, such an
account would have to consider not only the value of non-exploratory
behaviors—playing, eating, daydreaming—to the child but also the effect of
the child’s culture, temperament, upbringing, and individual interests on
how she perceives the value of the information she might gain through
exploration. Nonetheless, advancing our understanding of how children
assess the relative value of information gain seems critical, given that
competing utilities can have determinative effects on learning.

1.2. Knowing How to Explore

Understanding the expected utility of exploratory actions helps answer the
question of when the child should engage in exploration. However, the child
must know not only that there is information to be gained but also how
precisely to gain it. Even the simplest forms of exploratory behavior raise
questions about how humans (Adolph, Eppler, & Gibson, 1993; Berger,
Adolph, & Lobo, 2005; Brown, 1990; Gibson, 1977; Lockman, 2000;
Norman, 1988, 1999) and other animals (Brauer, Kaminski, Reidel, Call, &
Tomasello, 2006; Emery & Clayton, 2004; Hood, Carey, & Prasada, 2000;
Mendes, Hanus, & Call, 2007; Stulp, Emery, Verhulst, & Clayton, 2009) learn
to recognize the possible actions that the environment affords. Nonetheless, in
cases where there is a direct mapping between an action and information gain,
the question of how to explore has a relatively straightforward answer: act on
the entity with greatest uncertainty (e.g. by pulling a lever, putting a block on
a machine, or lifting a card to learn its value; see Oaksford & Chater, 1994).

Sometimes, however, no single action available to the learner will
support information gain. The learner may have to plan a complex series of
actions in order to isolate variables or may have to resign herself to the fact
that isolating the relevant variables is impractical or impossible. Effectively
generating informative evidence requires combining an understanding of
the probability of information gain together with an understanding of the
affordances that might permit it.

In principle, children might both learn from informative evidence (see
Gopnik & Wellman, 2012; Schulz, 2012, for review) and engage in
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exploration when they observe uninformative evidence (Schulz & Bona-
witz, 2007) without understanding either what it is about evidence that
makes it informative or how to generate such evidence. However, we now
know that at least in very simple contexts, children have both of these
abilities. Preschoolers, for instance, not only selectively explore when they
are uncertain which of two connected beads activate a toy, they also separate
the beads and test each one individually. Moreover, if the beads cannot be
detached, children orient the connected bead so that only a single bead
makes contact with the toy at a time (Cook, Goodman, & Schulz, 2011).
Thus, preschoolers seem to understand not only when there is potential for
information gain but also the probability that particular actions will generate
data relevant to a particular hypothesis (see also Sodian, Zaitchik, & Carey,
1991).

Needless to say, the real world rarely makes it so easy. Part of what
distinguishes science from cognition more broadly is the cultural accumu-
lation of tools and knowledge that can support information gain in ways that
go well beyond naive exploration. However, at least in simple contexts,
researchers have made progress in analyzing and formalizing the cognitive
processes involved in optimizing information gain (Cook et al., 2011;
Klayman, 1988; Klayman & Ha, 1987; Oaksford & Chater, 1994; Sobel &
Kushnir, 2006; Steyvers, Tenenbaum, Wagonmakers, & Blum, 2003). To
the degree that we can show how these abilities manifest in infants and
young children, we may come closer to understanding of what it means for
children to actively construct knowledge.

2. PROBLEM 2: THINKING

Thus far I have focused on how children might construct new
knowledge by gathering more data. Arguably, however, the distinguishing
attribute of human cognition is that we can arrive at new ideas—some of
which turn out to be true—merely by thinking of them. How is this possible?

As noted, hierarchical Bayesian inference models provide an elegant
account of how learners integrate theories on different levels of abstraction
with the interpretation of new evidence. They thus provide a way of
thinking about some key points of comparison between scientific inference
and cognition in early childhood (see Gopnik, in press; Gopnik, & Wellman,
2012; Schulz, 2012). In light of the ways that probabilistic inference models
have revolutionized cognitive science (Tenenbaum et al., 2011), it might
seem churlish to suggest that they do not really address the core issue at the
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heart of constructivism. However, these models explain how learners select
among competing hypotheses; for the most part, they do not attempt to
explain how learners construct hypotheses in the first place. They tell us how
we might choose the best idea from the ideas we have but they do not tell us
how we might think of something new.

Note that the problem of how we think of new ideas is not reducible to
the (also interesting) problem of how to make Bayesian inference algo-
rithmically tractable (Bonawitz chapter, this volume; Bonawitz & Griftiths,
2010; Sanborn, Griffiths, & Navarro, 2010; Shi, Feldman, & Griffiths,
2008).> As Bonawitz et al. note, in simple cases, all the relevant hypotheses
may be available to the learner in principle if not at any given moment.
Given, for instance, three colors of chips that activate a machine, the learner
might believe the machine is activated only by red chips but can also
entertain the possibility that it is activated only by blue chips, only by green
chips, only by red and blue chips, etc. Monte Carlo (randomized, sampling-
based) algorithms provide an efficient way to search among the hypotheses.
The idea of inference by rationally randomized sampling (i.e. sampling from
hypotheses with the highest posterior probability) also reconciles the
empirical evidence of variability in children’s learning with ideal Bayesian
analysis; the learner can entertain only a single hypothesis at a time and
nonetheless converge on the correct hypothesis. However, efficiently
sampling hypotheses is not the same as constructing them.

3. THEORY-GUIDED STOCHASTIC SEARCH

A closer approximation to constructivist learning comes from a family
of computational models, which suggest that learners have a “grammar” for
generating potentially infinitely many hypotheses (Goodman, Ullman, &

2 The problem of how we think of new ideas is also distinct from the so-called “old
evidence” problem (Glymour, 1980). The supposed problem is that you can’t learn
anything from old evidence because once evidence is known, it has a prior probability of
1(p(e) = 1), therefore also a likelihood of 1(p(e[h) = 1) and a posterior probability of
1(p(hle) = 1). This would contradict our intuition that, for instance, well-known
anomalies in Mercury’s orbit provided evidential support for Einstein’s theory of rela-
tivity. There are many responses to this (Eels, 1982; Garber, 1983; Howson, 1985), most
of which dispute the grounds for assuming that p(e) and p(e[h) = 1. However, the point
here is simply that the old evidence problem is different from the problem of how we
generate new hypotheses in the first place. Thanks to the editors for suggesting that I draw
this distinction.
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Tenenbaum, 2011; Tenenbaum, Griffiths, & Niyogi, 2007; Ullman,
Goodman, & Tenenbaum, 2012). If the learner’s initial theory fails to
account for the data in some respect, she can engage in a sampling-based
stochastic search process, proposing randomized changes to the hypothesis,
constrained by the prior probability that the grammar will generate the new
hypothesis. Efficient learning is further enabled by “templates”: grammat-
ical predicates that encode common logical, causal, or constitutive relations
(e.g. transitive relationships among variables). Rather than only con-
structing new hypotheses piecemeal, the learner can sample from the space
of existing templates. The stochastic search through the “outer loop” of the
hypothesis space is then grounded out by a search through an “inner loop,”
testing how well the new candidate hypothesis applies to the learner’s
observations. If the new hypothesis predicts the data better than the
previous hypothesis, the new hypothesis is likely to be accepted. In simu-
lated experiments, this approach shows dynamic features commensurate
with what we know about children’s learning: individual learning curves
are variable but learning on average is predictable, often following char-
acteristic sequences of transitions and typically proceeding from simpler to
more complex hypotheses.

This approach represents an exciting and welcome development. Rather
than simply describing data-driven learning, the account of theory acqui-
sition as stochastic search explains how structured representations can change
in the absence of new evidence. In this, it seems to capture some of what we
mean by “thinking.” And may be search by means of random variation and
selection is enough. Certainly, evolution testifies to the power of random
variation, together with the re-use of components that have functioned well
in the past. Perhaps, thought does not require any more intelligence in its
design than life itself.

Perhaps. However, with only the minimal constraints of simplicity,
grammaticality, and previously productive templates, changes to hypotheses
generated by random variation seems at best inefficient. More importantly,
our minds seem to have access to rich sources of information that could
better constrain the process of hypothesis generation and that current
approaches do not exploit. I will discuss these additional possible constraints
on hypothesis generation in the hopes that they might inspire new directions
for both computational and empirical research. As will be obvious, all the
ideas to follow are shamelessly speculative. I am taking advantage of the
genre of “chapter” rather than “journal paper” to advance ideas that are just
at their inception. However, begging the reader’s indulgence for the paucity
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of detail, I hope this attempt to think new thoughts about thinking new
thoughts might at least spark conversation.

4. ABSTRACT ERROR MAPS AS CONSTRAINTS
ON HYPOTHESIS GENERATION

The first kind of knowledge that could help guide a learner’s search for new
ideas is an abstract representation of the flaws in her current theory, what we
might call an “error map.” Here, I mean not a record of individual
prediction errors but a more abstract inference drawn from them: a repre-
sentation of the kind of errors being made and the relationship among those
errors. That is, much as the learner can draw inferences from individual
events to abstract categories and relationships, the learner might draw
inductive inferences from specific prediction errors to general kinds of errors
and the relations among them.

I will spell this idea out in the examples to follow. First, however, I want
to stress that my use of the phrase “error map” is provisional. As I discuss
below, the gaps that matter can occur not just between hypotheses and data
but also between hypotheses and explanatory desiderata or between
hypotheses and functional goals. Thus, the notion of error here refers to
something less like a prediction error and more like the learner’s subjective
error signal and her abstract representation of why her current hypothesis is

29 ¢

unsatisfactory. It might be better to think of these as “gap maps,” “goodness-
of-fit maps,” or simply “maps of our discontents.” Nonetheless, in many
cases, these gaps present as prediction errors (including both events that the
learner predicted wrongly and those she failed to predict at all), so for the
time being [ will stick with the notion of error maps.

In almost any conventional approach to learning (whether con-
nectionist or Bayesian; McClelland, 1988; Munakata & McClelland, 2003;
Ullman et al., 2012), prediction errors inform hypothesis selection. All else
being equal, learners will retain new hypotheses that improve the fit to the
data and reject those that do not. However, even in theory-guided
stochastic search (Ullman et al., 2012), prediction errors are put to use
only at the stage of hypothesis selection, affer a new hypothesis has been
generated. Suppose instead that learners could use a representation of the
gaps between their current hypotheses and the evidence to constrain the
process by which they generate new ideas in the first place. If so, many
simple, grammatical changes to the current hypothesis that would be
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randomly generated only to be rejected will not even be attempted; the
constraints imposed by such an abstract error map might mean that
learners could recognize a priori that most of the new ideas she could
generate are unlikely to solve her problem.

S 5. AN EXAMPLE: MAKING SENSE OF NOISE

Imagine, for instance, a child who knows many things about airplanes
and many things about phones. However, nothing in her intuitive theory of
airplanes or phones predicts that passengers will be asked to turn oft their
phones on take-oft. She does not have the concept of radio interference and
(like many of us, albeit for rather different reasons) she wants to understand
why you have to turn oft your phone on the airplane. Now imagine that the
child’s only option is to randomly add or delete simple, logical predicates
that have a high probability given her prior beliefs about airplanes and
phones. She could connect the two artifacts with infinitely many simple
constitutive, causal, or other relational claims consistent with her prior
beliefs and expressible in the grammar of her theories: perhaps airplanes, like
phones, have push buttons; perhaps airplanes and phones are both manu-
factured in Ohio; perhaps airplanes fly over the earth, and the earth has
phones, so airplanes sometimes fly over phones. On any account, these
hypotheses, once generated, will be swiftly rejected because none predicts
that you should shut off your phone when flying. But the odds of
converging on a valuable new idea through this kind of process seem, prima
facie, low.

Suppose instead that the child can constrain the space in which she
generates hypotheses by availing herself of an abstract representation of the
problem: the unanticipated but evident incompatibility between planes and
phones. She need not bother hypothesizing that planes and phones have
infinitely many commensurable features. She can randomly generate only
hypotheses in which some feature of planes is in conflict with some feature
of phones. In this way, she might selectively generate hypotheses that are
recognizably “good” hypotheses (in that, if true, they would solve the
problem), even though they might not be “good” with respect to their truth
value. Consider, for instance, the following (true) anecdote:

Adele (age 4): “Mommy, [ know why they make you turn off your

phone when the plane is taking off.”

Me: “Oh really? Why?”
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Adele: “Because when the plane takes off it’s too noisy to talk on the
phone.”

6. GOOD WRONG IDEAS AND BAD ONES

This is of course wrong; it is wrong even about the direction of
causality. At the same time, it is recognizably a good hypothesis. And it is
a remarkable feature of human cognition that we can simultaneously
recognize the “goodness” of an idea and its falsity. I suggest that we can do
this is because we evaluate a new idea first on the extent to which it is
consistent with the constraints of our abstract error map and only subse-
quently on its truth value or fit to the data.

The idea that a learner first generates and evaluates hypotheses through
the constraints of an abstract error map (and only secondarily through an
“inner-loop” checking the degree to which the hypothesis accounts for the
data) predicts many features of human cognition that seem intuitively to be
true. For instance, we seem to know that we are on the right (or wrong)
track in thinking about a problem well before we know whether our ideas
generate better fits to the data. Arguably this is because the ideas we generate
may have (or lack) key features of the abstract form of the solution to
a problem well before they are in fact solutions to the problem. Similarly, we
seem to have an internal “stopping function” that lets us know we have
arrived at a good idea (or lets us dismiss an idea out of hand) well before we
have tested its predictions. Our “ah ha” moments (see Gopnik, 2000) can
come months, even years, before we have any evidence that our great new
breakthrough idea is true; indeed, even when our great new breakthrough
turns out to be false, it might only slightly diminish our sense of its brilliance.
This is reasonable if our criterion for the elegance of an idea is its congruence
with an error map, rather than with the world. Finally, we seem to have an
intuitive sense of how tractable problems are, even in cases where tractability
does not reduce to technological or resource limitations. In such cases what
it might mean for a problem to be tractable is that the representation of the
problem—the abstract error map—sufficiently constrains the search space
for new hypotheses. If this account is correct then learning might sometimes
be facilitated not by changing our prior beliefs or the evidence but merely by
changing how we represent the gap between them. As one outstanding
generator of new hypotheses put it: “The formulation of the problem may
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be more important than the solution, which may simply be a matter of
mathematical or experimental skill” (Einstein, in Chang, 2006, p. 179).

S 7. ABSTRACT ERROR MAPS AND VARIABILITY
IN LEARNING

As researchers have noted (see Bonawitz chapter, this volume), sampling-
based approaches to Bayesian inference can help account for individual
differences in children’s learning. It is interesting to consider how adding
error maps as a top—down constraint on hypothesis generation might affect
individual variability in learning.

Imagine, for instance, two children, Jane and Michael. Borrowing and
extending the Ullman et al. (2012) example, suppose both children have
an incorrect theory of magnetism. The children are playing with magnets,
paperclips, and pennies but believe that they are playing with magnets and
non-magnets; they have failed to consider the possibility that paperclips
belong in a third category: ferrous non-magnets. Suppose further, that the
children have mis-categorized the paperclips in different ways. Jane (who
has noticed some magnetized paperclips sticking together) has classified the
paperclips as magnets; Michael has classified them with the pennies, as
non-magnets. The children’s different subtheories generate slightly
different prediction errors. Jane wrongly predicts that any paperclip will
interact with any other paperclip. When she gets data to the contrary, she
will have to explain how magnetism might sometimes disappear. Michael
wrongly predicts that no paperclip will interact with any other paperclip;
he will have to explain how magnetism could sometimes appear.

This asymmetry may lead the children to generate quite different abstract
representations of the problem and different abstract criteria that constrain
their search for new ideas. Jane is trying to generate new hypotheses that satisfy
the (perceived) desiderata of including a variable whose value can diminish
over time. Thus, Jane may come up, for instance, with the idea that
magnetism is a kind of energetic force that (like the energy in batteries)
sometimes runs out. Michael, by contrast, represents the problem as
a problem of explaining the unexpected appearance of a rare property (rather
than the less surprising problem of explaining its diminishment or disap-
pearance). Michael may thus be faster to recognize that only objects made of
specific materials can become magnetized and that they can be magnetized
only immediately after the relatively rare event of contacting a magnet.
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Each of these different error maps may lead to new hypotheses that get
different things right and wrong. Jane may correctly think of magnetism as
an energetic force but overlook the role of the particular materials; Michael
may recognize that the property of magnetism can be transferred from some
materials to others but fail to subsume magnetism into the more general
category of a kind of energy. In short, because learners’ theories constrain
what they represent as errors or gaps in their understanding, learners with
even subtly different theories may generate different abstract representations
of the problems they are trying to solve. To the degree that these different
abstract error maps constrain the generation of new hypotheses, differences
in the ways that learners represent the problem they are solving could lead to
quite different learning outcomes.

8. ABSTRACT ERROR MAPS, QUINIAN BOOTSTRAPPING,
AND ANALOGICAL REASONING

The ideas behind theory grammars and stochastic search (Goodman et al.,
2011; Ullman et al., 2012) were themselves partly motivated by another
account of how learners might move beyond hypothesis selection: Qui-
nian bootstrapping (Carey, 2009). Quinian bootstrapping is a proposal for
how learners might generate genuinely new representational resources.
Two key ideas are critical to the account. Quinian bootstrapping depends
first on the learner having access to explicit symbols (e.g. through
language or mathematics). These enable the learner to develop repre-
sentations whose meaning is genuinely novel in that it inheres in the
relationship among the symbols rather than only in earlier concepts (see
also Block, 1986). The learner can then use these to construct “place-
holder” representations that support inductive inferences about the
specific role and meaning of the new concepts.” For instance, a child may
notice the similarity between the order of words in the count list and
words corresponding to larger analog magnitudes. The words then serve
as a placeholder representation allowing the child to bootstrap an explicit
representational system in which she infers the meaning of the number
words.

3 The computational proposals echo this insofar as variables get their meaning from their
relationship to other terms in the theory grammar and serve as placeholder concepts
(Goodman et al., 2011; Ullman et al., 2012).
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This brief description in no way does justice to the work (see Carey,
2009, for exposition and review; see also Herme & Spelke, 1996 and Spelke,
2003). Here I merely want to note that the current proposal is both indebted
to and compatible with these ideas. In the number example, for instance,
neither the child’s earliest understanding of the count list nor her repre-
sentation of analog magnitudes predicts any similarity between the two.
Insofar as the child is able to constrain the new ideas, she generates to just
those that posit a commonality between the count list and analog magni-
tudes, one could think of that as a constraint on hypothesis generation
imposed by an abstract error map.

Arguably, however, the current proposal is more general than the case
of Quinian bootstrapping in two respects. First, learning need not depend
on the learner’s exposure to explicit linguistic or mathematical symbols
nor the learner happening to notice analogical mappings between repre-
sentations. To the degree that the learner can formulate an abstract
representation of the gaps between her current hypotheses and the
evidence (i.e. by categorizing the problem as one involving an unexpected
conflict between two variables, a diminishing property, an appearing
property), she might constrain the new hypotheses she generates to those
that might fill the gap.

Second, real discontinuities in development (e.g. manifest in the
development of the child’s understanding of number or the development
of the child’s ability to differentiate weight and density; see Carey, 2009,
for exposition and review) are compelling case studies in hypothesis
generation. However, there are many more mundane instances of
hypothesis generation (e.g. as manifest in Adele’s explanation of airplane
regulations) that do not involve radical conceptual change but are also not
merely data driven. Even in such ordinary cases, there is a real puzzle about
how leamners think of new ideas. Nothing in the current account depends
on the incommensurability of earlier and later ideas or requires the
construction of altogether new mental symbols. Constraints imposed by
abstract error maps might support the generation of new ideas quite
broadly.

Finally, considering more narrowly just the role of analogical reasoning
(Christie & Gentner, 2010; Gentner et al., 1997; Gentner, 2002; Gentner,
Holyoak, & Kokinov, 2001; Gentner & Markman, 1997; Gentner & Namy,
1999; Gentner & Smith, 2012; Holyoak & Thagard, 1996), it seems clear that
once we have an analogy—either because the relevant relationships are given
to us pedagogically or because we ourselves notice a surprising coincidence in
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structural relations across events'—it constrains the hypotheses we generate
(Christie & Gentner, 2010). What makes learning difficult, however, is that
fruitful analogical relations are not always obvious; the critical question is how
we know what kinds of events can be meaningfully compared. In principle,
abstract error maps might serve as higher order constraints, constraining even
the kinds of analogies we generate. If, for instance, you represent a problem as
a problem involving dissipating properties, you can then consider other kinds
of events that involve dissipating properties. In this way, you might arrive at an
analogy, for instance, between paperclips losing their sticking power and
batteries losing their charge.

Importantly, however, even when our abstract representation of
a problem does nof generate meaningful analogies, it can still effectively
constrain hypothesis generation. If, for instance, we represent being asked to
turn off our phone on the plane as a problem of an unexpected incom-
patibility between events, we can restrict our hypotheses to potential
incompatibilities between phones and planes without analogical reasoning
per se. Similarly, if we represent the problem of sticking paperclips as the
problem of the unexpected appearance or transfer of a property, we can
constrain our hypotheses to those involving specific materials or rare events
without comparing these events to structurally similar ones. Thus, I suggest
that analogical reasoning is an effective constraint on hypothesis generation
insofar as it constrained by the more general ability to come up with an
abstract representation of problems in the first place—and this representation
can constrain hypothesis generation in ways that extend beyond analogical
reasoning.

9. FUNCTIONAL ROLES AS CONSTRAINTS
ON HYPOTHESIS GENERATION

So far I have discussed constraints on hypothesis generation that are, so to
speak, epistemically respectable. Constraints imposed by abstract error maps

4 1 suggest that the learner starts with an abstract representation of a problem and this can
constrain the kinds of analogies she generates. Sometimes, however, the learner may
observe an unexpected structural alignment between events and register this alignment as
a coincidence in need of explanation (Griftiths & Tenenbaum, 2007). If the learner
happens to start with an analogy she is looking to explain (rather than starting with
a problem and looking for analogies that might elucidate it), the analogy may itself
support the construction of an abstract error map, constraining the learner’s generation of
new hypotheses to those that might explain the otherwise surprising relational alignment.

Rational Constructivism in Cognitive Development, First Edition, 2012, 269-294



Finding New Facts; Thinking New Thoughts 285

plausibly increase the probability that we will get at least some aspects of the
world right. Intuitively, however, there are less truth-preserving, but
arguably no less advantageous, considerations that seem to constrain the
ideas we generate.

Specifically, we have goals for our ideas. We want our ideas to do things:
to persuade, cajole, impress, explain, deceive, entertain, or instruct. We can
readily distinguish “good” and “bad” ideas on prudential grounds inde-
pendent of the extent to which they get the facts right. Given that we can
evaluate ideas with respect to our goals, it seems plausible that we might also
use our goals to constrain the ways we construct knowledge in the first place.
To the degree that we propose randomized changes to our current
hypotheses subject to the constraint of an abstract representation of what
function we want our ideas to fulfill, we may not only be more likely to
select but also to generate ideas that are in fact likely to do what we want
them to do.

Indeed, the possibility that hypothesis generation is constrained by our
goals may go a long way to explaining the diversity of ideas that human
beings entertain. In science, for instance, it is a desiderata of our hypotheses
that they be falsifiable. This is a functional constraint, not a normative one. It
is in no way incumbent on the truth that it be falsifiable. However, if we
specifically and selectively generate hypotheses that meet the goal of being
falsifiable, we can substantially constrain the space of new ideas. In other
disciplines, by contrast, the functional constraint on generating a hypothesis
is that the idea be plausible within the social, political, and economic
conditions of the day. Ideas are dismissed not for being unfalsifiable but for
being “ahistorical.” In the same vein, novelists may generate new ideas in
proportion to the probability that they are “in character,” engineers to the
extent that the new idea is feasible, business executives to the degree that the
new idea is profitable, and divinity students to the extent that the new idea
might provide spiritual guidance or inspiration.

These of course are merely the functional desiderata of our professions.
As human beings, we look for ideas to fill an even broader range of goals.
Even supposing we were confronted with the same problem in all cases, we
would generate different solutions depending on whether we wanted the
new idea to impress a superior, entertain a crowd, teach a child, win an
election, or woo a lover. Such constraints may or may not serve the function
of getting the world right but they allow us to constrain the space in which
we generate new ideas beyond merely the limit of whatever might be
lawtully expressed in the grammar of our current theories.
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If our goals are the top of our hierarchy of constraints on hypothesis
generation, these goals may probabilistically generate a constraint one level
lower: the criteria for fulfilling those goals. Suppose, for instance, you have
the goal of wanting to get from point A to point B. Having the goal of
navigation might generate a set of subordinate desiderata (e.g. to find
variously, the shortest distance between two points, the fastest route
between two points, the most scenic route between two points, or the route
between two points most likely to run into a certain someone). These
criteria might in turn be more likely to generate some hypotheses for abstract
structural forms than others (e.g. two-dimensional maps may be more
probable than tree structures; see Kemp & Tenenbaum, 2008).

By contrast, if our goal is explanation, then our constraints on
hypothesis generation might include all the criteria that psychologists and
philosophers have proposed for hypothesis selection (e.g. simplicity, non-
circularity, the ability to subsume specific relations under an abstract kind
of relation, an appeal to plausible causal, mechanistic relations; Bonawitz &
Lombrozo, in press; Hempel & Oppenheim, 1948; Keil & Wilson, 2000;
Keleman, 1999; Kitcher, 1989; Legare, Gelman, & Wellman, 2010;
Lombrozo, 2006, 2007, 2012; Lombrozo & Carey, 2006; Salmon, 1984;
Strevens, 2004; Woodward, 2009). Again, these criteria might be more
likely to generate some hypotheses for abstract structural forms than others
(e.g. in this case, tree structures may be more probable than two-
dimensional maps; Kemp & Tenenbaum, 2008). It is a well-established, if
somewhat mysterious, fact that explaining something to oneself can affect
learning and discovery, even in the absence of new data (Amsterlaw &
Wellman, 2006; Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi, de
Leeuw, Chiu, & LaVancher, 1994; Roscoe & Chi, 2007, 2008; Siegler,
2002; Williams & Lombrozo, 2009). If we do have abstract representations
of what might count as good explanations with respect to a problem, and
we could condition randomized changes to current hypotheses on these
desiderata, we might avoid generating any number of hypotheses that are
simple, plausible, grammatically lawful, and unsatistying. One way in
which explanatory desiderata may support learning is by constraining the
generation of new ideas to those new ideas to those that have a chance of
being, in fact, explanatory.

In pursuing the goals of navigation or explanation, we are arguably trying
to get the world right. However, even when our goals are more venal or
more frivolous, constraining our ideas by the extent to which they serve
a functional goal need not lessen our sensitivity to the facts of the matter.
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Once generated, any hypothesis can be subject to a “fact-checking” process
that assesses the extent to which the new idea predicts observed data. Still,
our willingness to accept a new hypothesis may be a function jointly of its fit
to the criteria set by a desired functional role and its fit to the data. If a new
hypothesis succeeds admirably at the former, it might be accepted despite
substantial difficulties with the latter.

Our all-too-human ability to admire ideas for reasons other than their
truth can provoke considerable and sometimes comedic, hand wringing
about human irrationality. In the latter vein, Stephen Colbert coined the
term “truthiness” to poke fun of what we might value in false, or at the very
least unsubstantiated, ideas. However, if by truthiness we mean something
like an idea’s ability to fill explanatory (or other) criteria generated by
a functional goal, our predilection for truthiness may be a feature, not a bug,
of human cognition.

Indeed, in order to be the kind of organism who can think of new ideas
at all, it may be critical that we are not overly wedded to the facts. The
state of having no new ideas and no new data might be rather like
gambling on a single-armed bandit machine or foraging in a landscape
with a single berry patch; even if the existing payoff is low, there is little
reason to explore. No idea that we do not have will, at the time of not yet
having it, fit the data better than whatever we currently believe. Given the
low odds that random gropings will improve our lot, if we were
committed only to maximizing our best fit to the data, an idea in the hand
might always be preferred to the two not yet even in the bush. If instead
we have truth-independent criteria for hypothesis generation, we might be
motivated to generate ideas that payoft in other ways, by being explana-
tory, entertaining, provocative, or useful. We can find out later if they
are true.

Indeed, it is a curious feature of human cognition that the kinds of goals
that lead us to pursue new ideas are often neither here nor there with respect
to the significance of the ideas themselves. The colonialists did not profit any
less from the Americas because Columbus discovered them in a misguided
search for the West Indies. Similarly, whatever you think of the medieval
monks’ quest for incontrovertible proof of the existence of God, it did not
diminish the magnitude of their contributions to analytic logic. It is not
merely that the merit of our discoveries is independent of the merit of
our motivations but that the merit of our motivations may be precisely
in imposing critical constraints on our search processes and enabling
discovery at all.
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§ 10. CONSTRUCTIVISM AND IMAGINATION

I'll end with a speculation about imagination. There are many ways
in which human beings interact with the world that seem peculiarly
divorced from reality. We confabulate explanations for our behavior, both
in sickness (Gazzaniga, 1998; Phelps & Gazzaniga, 1992) and in health
(Carruthers, 2009; Nichols & Stich, 2000). We develop elaborate, coherent
autobiographical narratives that are false and misleading (Kopelman, 1987;
Kopelman, Ng, & Van den Brooke, 1997). We fret over imagined events.
We engage in pretend play as children and we daydream as adults. We
report our actual dreams as stories. We create and enjoy cultural artifacts
ranging from myths to movies.

These phenomena are united primarily in being puzzling. Given our
considerable aptitude for exploring the real world, why is so much of
human cognition devoted to the construction and contemplation of
fictional ones? What advantage does unreality confer that we should find
it so compelling? Researchers have long pointed to the value of being
able to reason counterfactually for planning, for causal reasoning, and for
novel interventions (Gopnik, 1990; Harris, 2000; Harris, German, &
Mills, 1996; Weisberg & Bloom, 2009; Buchsbaum, Bridgers, Weisber, &
Gopnik, 2012; Walker & Gopnik, under contract; Weisberg & Sobel,
2012). However, the demands of counterfactual reasoning would not
seem to require the wanton disengagement with reality manifest across
these diverse cognitive phenomena. As Jerry Fodor noted sardonically in
response to Steven Pinker’s suggestion that we appreciate fiction because
it offers us insight into situations we might encounter in real life:

.. what if it turns out that, having just used the ring that | got by kidnapping
a dwarf to payoff the giants who built me my new castle, | should discover that it
is the very ring that | need in order to continue to be immortal and rule the world?
It is important to think out the options betimes, because a thing like that could
happen to anyone and you can never have too much insurance (Fodor, 1998).

Here is a difterent proposal. What matters about our fictions is not that
they tell us the content of possible worlds or that they exercise our ability to
reason through the consequences of false premises. What matters is our
ability to create the false premises in the first place. Being able to disengage
from data may be requisite to being the kind of creature that can go beyond
data-driven learning. Indeed, it may be that thinking of new ideas requires
precisely the ability to impose a kind of cognitive firewall between the
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criteria for constructing an idea and the criteria for verifying it. This is not to
say that there are not constraints, even on our fictions (Harris, 2000;
Shtulman, 2009; Weisberg & Bloom, 2009; Weisberg & Goodstein, 2009;
Weisberg & Sobel, 2012; Wyman, Rakoczy, & Tomasello, 2009).
However, the constraints most important for learning may be “narrative”
constraints. Good narratives do not have to be true, but they do have to do
all of the following: provide an abstract representation of a problem and its
solution, satisty criteria consistent with the narrative goal (e.g. perhaps by
fulfilling causal and subsumptive explanatory demands), and fulfill a func-
tional role for entertainment, persuasion, illustration, provocation, expla-
nation, soothing, or stimulation. In short, the constraints on a good narrative
are plausibly the rational constraints for hypothesis generation generally.

On this account, we spend our time telling stories for the same reason
that monkeys spend their time climbing trees, not because it usually solves
a problem but because it is hard to know when a problem will appear. If we
engage in the activity continually, then when a problem does come along,
we may find ourselves making the right leap at the right time. In engaging,
from early childhood onward, in acts of fictional narratives, in telling stories
about what we experience even in our sleep, in retaining this ability even in
the face of devastating insults to our bodies and brains, and in finding this
engagement sufficiently pleasurable that we seek it out in our cinemas,
theaters, novels, and fire circles, we may be manifesting the most distinc-
tively human aspect of our ability to learn: the ability to step away from the
real world in order to better see the world as it really is.
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